
EPICS
Input / Output Controller (IOC)
Application Developer’s Guide

Martin R. Kraimer

Argonne National Laboratory
Advanced Photon Source
November 2000
EPICS Release 3.14.0alpha1
EPICS Release: R3.13.0.beta12 EPICS IOC Application Developer’s Guide 1

2 EPICS IOC Application Developer’s Guide

Table of Contents
 Table of Contents . 1

Chapter 1: Introduction . 7
1.1. Overview . 7
1.2. Acknowledgments . 9

Chapter 2: New Features for 3.14 . 11
2.1. Introduction . 11
2.2. Example Application . 11
2.3. Shell for non vxWorks environment . 13
2.4. Some Unresolved Items . 14

Chapter 3: EPICS Overview . 17
3.1. What is EPICS? . 17
3.2. Basic Attributes . 17
3.3. Hardware - Software Platforms (Vendor Supplied). 18
3.4. IOC Software Components . 19
3.5. Channel Access . 21
3.6. OPI Tools . 22
3.7. EPICS Core Software. 23

Chapter 4: EPICS Build Facility . 25
4.1. Overview . 25
4.2. Makefiles . 27
4.3. Make. .28
4.4. Makefile definitions . 29
4.5. Table of Makefile definitions. 38
4.6. Configuration Files . 43

Chapter 5: Database Locking, Scanning, And Processing 47
5.1. Overview . 47
5.2. Record Links . 47
5.3. Database Links. 48
5.4. Database Locking. 48
5.5. Database Scanning . 49
5.6. Record Processing . 50
5.7. Guidelines for Creating Database Links . 50
5.8. Guidelines for Synchronous Records. 52
5.9. Guidelines for Asynchronous Records . 53
5.10.Cached Puts . 55
5.11.Channel Access Links . 55

Chapter 6: Database Definition . 57
EPICS Release: R3.14.0alpha1 EPICS IOC Application Developer’s Guide 1

 Table of Contents
6.1. Overview . 57
6.2. Brief Summary of Database Definition Syntax. 57
6.3. General Rules for Database Definition . 58
6.4. Menu . 61
6.5. Record Type . 61
6.6. Device . 66
6.7. Driver . 67
6.8. Breakpoint Table . 67
6.9. Record Instance . 68
6.10.Record Attribute . 71
6.11.Breakpoint Tables - Discussion . 71
6.12.Menu and Record Type Include File Generation. . 72
6.13.dbExpand . 75
6.14.dbLoadDatabase . 76
6.15.dbLoadRecords. 77
6.16.dbLoadTemplate. 77
6.17.dbReadTest . 78

Chapter 7: IOC Initialization . 81
7.1. Overview - Environments requiring a main program . 81
7.2. Overview - vxWorks . 81
7.3. Overview - RTEMS . 82
7.4. iocInit .82
7.5. Changing iocCore fixed limits . 84
7.6. TSconfigure. 85
7.7. initHooks . 85
7.8. Environment Variables . 86
7.9. Initialize Logging . 87

Chapter 8: Access Security . 89
8.1. Overview . 89
8.2. Quick Start. 89
8.3. User’s Guide . 90
8.4. Design Summary . 95
8.5. Access Security Application Programmer’s Interface . 97
8.6. Database Access Security . 101
8.7. Channel Access Security . 103
8.8. Access Control: Implementation Overview . 104
8.9. Structures. 106

Chapter 9: IOC Test Facilities. 107
9.1. Overview . 107
9.2. Database List, Get, Put . 107
9.3. Breakpoints . 109
9.4. Error Logging . 111
9.5. Hardware Reports . 111
9.6. Scan Reports . 112
9.7. Time Server Report . 112
9.8. Access Security Commands . 113
9.9. Channel Access Reports . 114
9.10.Interrupt Vectors. 115
9.11.EPICS . 115
9.12.Database System Test Routines . 116
2 EPICS IOC Application Developer’s Guide

 Table of Contents
9.13.Record Link Reports . 117
9.14.Old Database Access Testing . 117
9.15.Routines to dump database information . 118

Chapter 10: IOC Error Logging . 121
10.1.Overview . 121
10.2.Error Message Routines . 121
10.3.errlog Task. 123
10.4.Status Codes . 124
10.5.iocLog . 125

Chapter 11: Record Support . 127
11.1.Overview . 127
11.2.Overview of Record Processing . 127
11.3.Record Support and Device Support Entry Tables . 128
11.4.Example Record Support Module . 129
11.5.Record Support Routines . 135
11.6.Global Record Support Routines. 138

Chapter 12: Device Support. 143
12.1.Overview . 143
12.2.Example Synchronous Device Support Module . 143
12.3.Example Asynchronous Device Support Module . 145
12.4.Device Support Routines. 147

Chapter 13: Driver Support. 149
13.1.Overview . 149
13.2.Device Drivers. 149

Chapter 14: Static Database Access . 153
14.1.Overview . 153
14.2.Definitions. 153
14.3.Allocating and Freeing DBBASE . 154
14.4.DBENTRY Routines. 155
14.5.Read and Write Database . 156
14.6.Manipulating Record Types . 157
14.7.Manipulating Field Descriptions. 158
14.8.Manipulating Record Attributes . 159
14.9.Manipulating Record Instances. 159
14.10.Manipulating Menu Fields . 161
14.11.Manipulating Link Fields . 162
14.12.Manipulating MenuForm Fields . 163
14.13.Find Breakpoint Table. 165
14.14.Dump Routines . 165
14.15.Examples . 165

Chapter 15: Runtime Database Access. 169
15.1.Overview . 169
15.2.Database Include Files . 169
15.3.Runtime Database Access Overview . 171
15.4.Database Access Routines. 174
15.5.Runtime Link Modification. 182
15.6.Channel Access Monitors . 183
15.7.Lock Set Routines . 183
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 3

 Table of Contents
15.8.Channel Access Database Links. 185

Chapter 16: Device Support Library . 189
16.1.Overview . 189
16.2.Registering VME Addresses . 189
16.3.Interrupt Connect Routines. 190
16.4.Macros and Routines for Normalized Analog Values . 191

Chapter 17: EPICS General Purpose Tasks . 193
17.1.Overview . 193
17.2.General Purpose Callback Tasks . 193
17.3.Task Watchdog. 196

Chapter 18: Database Scanning . 199
18.1.Overview . 199
18.2.Scan Related Database Fields. 199
18.3. Scan Related Software Components . 200
18.4.Implementation Overview . 203

Chapter 19: libCom . 209
19.1.bucketLib.h. 209
19.2.calc .209
19.3.cvtFast.h . 209
19.4.cxxTemplates.h. 210
19.5.dbmf.h. 210
19.6.ellLib.h . 211
19.7.fdmgr.h . 212
19.8.freeList.h. 212
19.9.gpHash.h. 212
19.10.logClient . 213
19.11.macLib.h. 213
19.12.misc. 214
19.13.timer.h. 216

Chapter 20: libCom OSI libraries. 217
20.1.Overview . 217
20.2.epicsAssert.h. 218
20.3.osiEvent.h . 218
20.4.osiFindGlobalSymbol.h . 218
20.5.osiInterrupt.h . 218
20.6.osiMutex.h . 219
20.7.osiPoolStatus.h . 220
20.8.osiProcess.h . 220
20.9.osiRing.h. 221
20.10.osiSem.h . 221
20.11.osiSigPipeIgnore.h . 224
20.12.osiSock.h . 224
20.13.osiThread.h . 224
20.14.osiTime.h . 227
20.15.tsStamp.h . 227

Chapter 21: Registry. 229
21.1.Registry.h . 229
21.2.registryRecordType.h . 229
4 EPICS IOC Application Developer’s Guide

 Table of Contents
21.3.registryDeviceSupport.h . 230
21.4.registryDriverSupport.h. 230
21.5.registryFunction.h . 230
21.6.registerRecordDeviceDriver.c. 230
21.7.registerRecordDeviceDriver.pl . 230

Chapter 22: Database Structures . 231
22.1.Overview . 231
22.2.Include Files . 231
22.3.Structures. 233
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 5

 Table of Contents
6 EPICS IOC Application Developer’s Guide

onents

ems in

r that

ctory

S IOC.

format

w it is

rovide
Chapter 1: Introduction

1.1 Overview
This document describes the core software that resides in an Input/Output Controller (IOC), one of the major comp
of EPICS. It is intended for anyone developing EPICS IOC databases and/or new record/device/driver support.

The plan of the book is:

New Features for release 3.14

A brief description of new features. The most important new feature is that iocCore is now supported on syst
addition to vxWorks.

EPICS Overview

An overview of EPICS is presented, showing how the IOC software fits into EPICS. This is the only chapte
discusses OPI software and Channel Access rather than just IOC related topics.

EPICS Build Facility

This chapter, which was written by Janet Anderson, describes the EPICS build facility including dire
structure, environment and system requirements, configuration files, Makefiles, and related build tools.

Database Locking, Scanning, and Processing

Overview of three closely related IOC concepts. These concepts are at the heart of what constitutes an EPIC

Database Definition

This chapter gives a complete description of the format of the files that describe IOC databases. This is the
used by Database Configuration Tools and is also the format used to load databases into an IOC.

IOC Initialization

A great deal happens at IOC initialization. This chapter removes some of the mystery about initialization.

Access Security

Channel Access Security is implemented in IOCs. This chapter explains how it is configured and also ho
implemented.

IOC Test Facilities

Epics supplied test routines that can be executed via the epics or vxWorks shell.

IOC Error Logging

IOC code can call routines that send messages to a system wide error logger.

Record Support

The concept of record support is discussed. This information is necessary for anyone who wishes to p
customized record and device support.

Device Support
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 7

Chapter 1: Introduction
Overview

f record
access

records
of just

to this

 space.

sed by

s used
the OSI

Since
ic idea

S tools

Lange
The concept of device support is discussed. Device support takes care of the hardware specific details o
support, i.e. it is the interface between hardware and a record support module. Device support can directly
hardware or may interface to driver support.

Driver Support

The concepts of driver support is discussed. Drivers, which are not always needed, have no knowledge of
but just take care of interacting with hardware. Guidelines are given about when driver support, instead
device support, should be provided.

Static Database Access

This is a library that works on Unix and vxWorks and on initialized or uninitialized EPICS databases.

Runtime Database Access

The heart of the IOC software is the memory resident database. This chapter describes the interface
database.

Device Support Library

A set of routines are provided for device support modules that use shared resources such as VME address

EPICS General Purpose Tasks

General purpose callback tasks and task watchdog.

Database Scanning

Database scan tasks, i.e. the tasks that request records to process.

libCom

EPICS base includes a subdirectory src/libCom, which contains a number of c and c++ libraries that are u
the other components of base. This chapter describes most of these libraries.

libCom OSI

This chapter describes the libraries in libCom that provide Operating System Independent (OSI) interrface
by the rest of EPICS base. LibCom also contains operating system dependent code that implements
interfaces.

Registry

Under vxWorks osiFindGlobalSymbol can be used to dynamically bind to record, device, and driver support.
on some systems this always returns failure, a registry facility is provided to implement the binding. The bas
is that any storage meant to be "globally" accessable must be registered before it can be accessed

Database Structures

A description of the internal database structures.

Other than the first chapter this document describes only core IOC software. Thus it does not describe other EPIC
which run in an IOC such as the sequencer. It also does not describe Channel Access.

The reader of this manual should also have the following documents:

• EPICS Record Reference Manual, Philip Stanley, Janet Anderson and Marty Kraimer
See LANL Web site for latest version.

• EPICS IOC Software Configuration Management, Marty Kraimer, Andrew Johnson, Janet Anderson, Ralph
http://www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/AppDevManuals/iocScm-3.13.2/index.html

• vxWorks Programmer’s Guide, Wind River Systems

• vxWorks Reference Manual, Wind River Systems

• RTEMS C User’s Guide, Online Applications Research
8 EPICS IOC Application Developer’s Guide

Chapter 1: Introduction
Acknowledgments

ciple
nters
dback

ovide
e data

resident
ary to
n Tool
features

nd the

stance

IOC
fort now

/device/
ff Hill.
) lose

ative
s links,

Marty
hreads
that is

upport
1.2 Acknowledgments
The basic model of what an IOC should do and how to do it was developed by Bob Dalesio at LANL/GTA. The prin
ideas for Channel Access were developed by Jeff Hill of LANL/GTA. Bob and Jeff also were the principle impleme
of the original IOC software. This software (called GTACS) was developed over a period of several years with fee
from LANL/GTA users. Without their ideas EPICS would not exist.

During 1990 and 1991, ANL/APS undertook a major revision of the IOC software with the major goal being to pr
easily extendible record and device support. Marty Kraimer (ANL/APS) was primarily responsible for designing th
structures needed to support extendible record and device support and for making the changes needed to the IOC
software. Bob Zieman (ANL/APS) designed and implemented the UNIX build tools and IOC modules necess
support the new facilities. Frank Lenkszus (ANL/APS) made extensive changes to the Database Configuratio
(DCT) necessary to support the new facilities. Janet Anderson developed methods to systematically test various
of the IOC software and is the principal implementer of changes to record support.

During 1993 and 1994, Matt Needes at LANL implemented and supplied the description of fast database links a
database debugging tools.

During 1993 and 1994 Jim Kowalkowski at ANL/APS developed GDCT and also developed the ASCII database in
format now used as the standard format. At that time he also createddbLoadRecords anddbLoadTemplate .

The build utility method resulted in the generation of binary files of UNIX that were loaded into IOCs. As new
architectures started being supported this caused problems. During 1995, after learning from an abandoned ef
referred to asEpicsRX , the build utilities and binary file (calleddefault .dctsdr) were replaced by all ASCII files.
The new method provides architecture independence and a more flexible environment for configuring the record
driver support. This principle implementer was Marty Kraimer with many ideas contributed by John Winans and Je
Bob Dalesio made sure that we did not go to far, i.e. 1) make it difficult to upgrade existing applications and 2
performance.

In early 1996 Bob Dalesio tackled the problem of allowing runtime link modification. This turned into a cooper
development effort between Bob and Marty Kraimer. The effort included new code for database to Channel Acces
a new library for lock sets, and a cleaner interface for accessing database links.

In early 1999 the port of iocCore to non vxWorks operating systems was started. The principle developers were
Kraimer, Jeff Hill, and Janet Anderson. William Lupton converted the sequencer as well as helping with the posix t
implementation of osiSem and osiThread. Eric Norum provided the port to RTEMS and also contributed the shell
used on non vxWorks environments.

Many other people have been involved with EPICS development, including new record, device, and driver s
modules.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 9

Chapter 1: Introduction
Acknowledgments
10 EPICS IOC Application Developer’s Guide

OSIX

ations.

cation
Chapter 2: New Features for 3.14

2.1 Introduction
This is the first release that supports iocCore on non vxWorks operating systems.

The following components of iocCore are included with base:

• Database locking, scanning, and processing

• Channel access client and server support

• Standard record types and soft device support

• Access security

• General purpose soft device support.

• The port to non vxWorks operating systems is based on the following assumptions:

• All hardware support is unbundled from base.

• A multithreaded environment is necessary.

• Operating system independent (OSI) components are defined such that:

• vxWorks implementation has minimal overhead compared to vxWorks specific calls

• The components can be implemented via a combination of POSIX, POSIX.4 (posix real time), and P
threads (pthreads).

• Each OS can use the posix implementation or provide it’s own implementation.

It must be emphasized that this is alpha software. The first alpha version is not ready for existing vxWorks applic
Later versions will provide a relatively easy conversion path from 3.13 applications.

2.2 Example Application
This section explains how to create an example IOC application in a directory <top>, naming the appli
exampleApp and the ioc directoryiocexample .

2.2.1 Check thatEPICS_HOST_ARCH is defined

Execute the command:

echo $EPICS_HOST_ARCH (Unix)

or

set EPICS_HOST_ARCH (Windows)
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 11

Chapter 2: New Features for 3.14
Example Application

sh and
as been

of the

es are

typical
This should display your workstation architecture, for examplesolaris-sparc or win32-x86 . If you get an
"Undefined variable" error, you should set EPICS_HOST_ARCH to your host operating system followed by a da
then your host architecture, e.g. solaris-sparc. The perl script EpicsHostArch.pl in the base/startup directory h
provided to help set EPICS_HOST_ARCH.

2.2.2 Create the example application

The following commands create an example application.

mkdir <top>
cd <top>
<base>/bin/<arch>/makeBaseApp.pl -t example example
<base>/bin/<arch>/makeBaseApp.pl -i -t example example

The last command will ask you to enter an architecture. This is only used for a vxWorks target. Just enter one
CROSS_COMPILER_TARGET_ARCHS specified in<base>/configure/CONFIG_SITE .

Windows Users Note: Perl scripts are invoked with the command perl <scriptname> on win95/NT. Perl script nam
case sensitive. For example to create an application on WIN95/NT:

perl C:\epics\base\bin\win32\makeBaseApp.pl -t example example

2.2.3 Inspect files

Spend some time looking at the files that appear under <top>. Do this BEFORE building. This allows you to see
files which are needed to build an application without seeing the files generated by make.

2.2.4 Build

In directory <top> execute the command

gnumake

Linux Note: On linux gnumake is the native make so just execute:

make

2.2.5 Inspect files

This time you will see the files generated by make as well as the original files.

2.2.6 Run the example

The example can be run on vxWorks, RTEMS, or on a supported host.

• vxWorks - Set your boot parameters as described below and then boot the ioc.

• RTEMS - RTEMS uses TFTP to read startup scripts and configuration files. On your TFTP server:

• Copy all db/xxx files to <tftpbase>/epics/<target_hostname>/db/xxx.

• Copy all dbd/xxx files to <tftpbase>/epics/<target_hostname>/dbd/xxx.

• Copy iocBoot/iocexample/st.cmd to <tftpbase>/epics/<target_hostname>/st.cmd.
12 EPICS IOC Application Developer’s Guide

Chapter 2: New Features for 3.14
Shell for non vxWorks environment

g this
disk,

how to

ks boot

e same

mmence
your

ion). In
• Transfer the application executable image to the target machine and start it. The method of doin
depends on your target hardware. Typical methods include BOOTP/TFTP, booting from a floppy
burning the application into flash memory or using gdb to download and execute the application.

• On a host, e.g. solaris

• cd <top>/iocBoot/iocexample

• ../../bin/solaris-sparc/example stcmd.host

After the ioc is started try some of the shell commands (e.g.dbl or dbpr <recordname>) described in chapter "IOC
Test Facilities". In particular rundbl to get a list of the records.

The channel access application caExample is run by executing the command

<mytop>/bin/<hostarch>/caExample <pvname>

where

<mytop> is the full path name to your application top directory.
<hostarch> is your host architecture.
<pvname> is one of the record names displayed by thedbl ioc shell command.

2.2.7 vxWorks boot parameters

The vxWorks boot parameters are set via the console serial port on your IOC. Life is much easier if you find out
connect the serial port to a window on your workstation.

The vxWorks boot parameters look something like the following:

boot device : xxx
processor number : 0
host name : xxx
file name : <full path to board support>/vxWorks
inet on ethernet (e) : xxx.xxx.xxx.xxx:<netmask>
host inet (h) : xxx.xxx.xxx.xxx
user (u) : xxx
ftp password (pw) : xxx
flags (f) : 0x0
target name (tn) : <hostname for this inet address>
startup script (s) : <top>/iocBoot/iocexample/st.cmd

The actual values for each field are site and IOC dependent. Two fields that you can change at will are the vxWor
image and the location of the startup script.

Note that the full path name for the correct board support boot image must be specified. If bootp is used th
information will need to be placed in the bootp host’s configuration database instead.

When your boot parameters are set properly, just press the reset button on your IOC, or use the @ command to co
booting. You will find it VERY convenient to have the console port of the IOC attached to a scrolling window on
workstation.

2.3 Shell for non vxWorks environment
Because the vxWorks shell is not available, EPICS base provides a simple shell ioccrf(IOC Call Registered Funct
the main program it can be invoked as follows:
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 13

Chapter 2: New Features for 3.14
Some Unresolved Items

n ioccrf

order

rs the

ce it is

ing on

and
to use

linked

are

aps
ioccrf("filename")

or

ioccrf(0)

If the argument is a filename, the commands in the file are executed and ioccrf returns. If the argument is 0 the
goes into interactive mode, i.e. it prompts for and executes commands until an exit command is issued.

If ioccrf can use the GNU readline utility, which provides bash style command history and command line editing. In
to implement these features it must be compiled with the options:

OP_SYS_LDLIBS = -lreadline
OP_SYS_CPPFLAGS = -DIOCSH_USE_READLINE

Ioccrf supports the following builtin commands:

< "filename" Execute commands from filename
exit Exit ioccrf
cd dir Change directory
show Show threads
threadInit Call threadInit

Ioccrf calls registered commands. A call to ioccrfrRegister, which should be made in all main programs, registe
following:

dbLoadDatabase
dbLoadRecords
dbLoadTemplate
Most commands described in chapter "IOC Test facilities"

NOTE: This started as just as a shell that could just call registered functions, which is why it is named ioccrf. Sin
now more general it should have a different name. Perhaps iocsh?

2.4 Some Unresolved Items
• Currently beacons do not perform properly if two or more versions of iocCore and/or portable servers are run

the same workstation.

• Mutex Performance. Currently iocCore requires recursive mutexes, semMutexTakeTimeout,
semMutexTakeNoWait. Implementing these on many systems causes semMutexTake and semMutexGive
excessive cpu cycles.

• CA client performance. Existing cllients linked against 3.14 use considerably more cpu time than when
against 3.13.

• libcom reviewed

• C++ APIs in libCom. This is the first release of iocCore that is using C++. The current developer’s
having major disputes about C++ conventions and design standards.

• osi naming conventions. Current naming conventions are not uniform.
• When should user code see "osi"
• For c++ what are conventions
• For c what are the conventions

• osiRing
• Move this from libCom/osi to libCom/ringBuffer. Change the name from osiRing. Perh

ringBufferBytes?
14 EPICS IOC Application Developer’s Guide

Chapter 2: New Features for 3.14
Some Unresolved Items

ad of

issing

does

of 10
• Implement a ringPointer, which only gets and puts a single pointer. Use this in src/db inste
osiRing.

• osiThread
• Should threadDestroy be allowed?

• osiMutex
• Should we remove the requirement for recursive mutexes?
• Should we remove semMutexTakeNoWait?
• Should we remove semMutexTakeTimeout?

• shell for non vxWorks environments

• Additional extensions to ioccrf? Also give it a better name such as iocsh.
• Provide a help facility that shows callable functions and their arguments?
• Other features?

• Tcl/Tk wrapper ?

• facility initialization

• Use c++ static classes to initialize where possible. This is already done in many places. Are we m
some?

• What should applications use?

• Lazy initialization? This is already done in many places. Are we missing some?

• Should logClient and logServer be moved to separate directory under src or even unbundled?

• devLib - Thus is actually support for VME. What should we do with devLib?

• Decorated Names. This is for creating win32 DLLs. We should consider a way of creating the DLLs which
not require the decorated names.

• Compiler optimization switches. What should we use? Turning on the -g flag for GNU causes a factor
increase in size of libraries on Linux.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 15

Chapter 2: New Features for 3.14
Some Unresolved Items
16 EPICS IOC Application Developer’s Guide

tem. The

other
E/VXI

cate.
ication

ork.
Chapter 3: EPICS Overview

3.1 What is EPICS?
EPICS consists of a set of software components and tools that Application Developers use to create a control sys
basic components are:

• OPI: Operator Interface. This is a workstation which can run various EPICS tools.

• IOC : Input/Output Controller. Any platform that can support EPICS run time databases together with the
software components described in the manual. One example is a workstation. Another example is a VM
based system using vxWorks or RTEMS as the realtime operating system.

• LAN : Local Area Network. This is the communication network which allows the IOCs and OPIs to communi
EPICS provides a software component, Channel Access, which provides network transparent commun
between a Channel Access client and an arbitrary number of Channel Access servers.

A control system implemented via EPICS has the following physical structure.

The rest of this chapter gives a brief description of EPICS:

• Basic Attributes: A few basic attributes of EPICS.

• Platforms: The vendor supplied Hardware and Software platforms EPICS supports.

• IOC Software: EPICS supplied IOC software components.

• Channel Access: EPICS software that supports network independent access to IOC databases.

• OPI Tools: EPICS supplied OPI based tools.

• EPICS Core: A list of the EPICS core software, i.e. the software components without which EPICS will not w

3.2 Basic Attributes
The basic attributes of EPICS are:

IOC

LAN

IOC

OPI OPI OPI.

.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 17

Chapter 3: EPICS Overview
Hardware - Software Platforms (Vendor Supplied)

stom

ed, no
ons can

spread

xtent
at it be

times.

th each
second,
• Tool Based: EPICS provides a number of tools for creating a control system. This minimizes the need for cu
coding and helps ensure uniform operator interfaces.

• Distributed : An arbitrary number of IOCs and OPIs can be supported. As long as the network is not saturat
single bottle neck is present. A distributed system scales nicely. If a single IOC becomes saturated, its functi
be spread over several IOCs. Rather than running all applications on a single host, the applications can be
over many OPIs.

• Event Driven: The EPICS software components are all designed to be event driven to the maximum e
possible. For example, rather than having to poll IOCs for changes, a Channel Access client can request th
notified when a change occurs. This design leads to efficient use of resources, as well as, quick response

• High Performance: A SPARC based workstation can handle several thousand screen updates a second wi
update resulting from a Channel Access event. A 68040 IOC can process more than 6,000 records per
including generation of Channel Access events.

3.3 Hardware - Software Platforms (Vendor Supplied)

3.3.1 OPI

Hardware

• Unix based Workstations: Well supported platforms include SOLARIS, and HP-UX

• Linux

• Windows NT

• Limited support for VMS

Software

• UNIX or Linux or winNT

• X Windows

• Motif Toolkit

3.3.2 LAN

Hardware

• Ethernet (most flavors)

Software

• TCP/IP protocols via sockets

3.3.3 IOC

Hardware

• VME/VXI bus and crates

• Various VME modules (ADCs, DAC, Binary I/O, etc.)

• Allen Bradley Scanner (Most AB I/O modules)

• GPIB devices

• BITBUS devices
18 EPICS IOC Application Developer’s Guide

Chapter 3: EPICS Overview
IOC Software Components

to the

utine.
• CAMAC

• CANBUS

• Motorola 68xxx

• Intel

• PowerPC

• Sparc

Software

• vxWorks operating system

• Real time kernel

• Extensive “Unix like” libraries

• RTEMS

• Host, e.g. solaris

3.4 IOC Software Components
An IOC contains the following EPICS supplied software components.

• IOC Database: The memory resident database plus associated data structures.

• Database Access: Database access routines. With the exception of record and device support, all access
database is via the database access routines.

• Scanners: The mechanism for deciding when records should be processed.

• Record Support: Each record type has an associated set of record support routines.

• Device Support: Each record type can have one or more sets of device support routines.

• Device Drivers: Device drivers access external devices. A driver may have an associated driver interrupt ro

Ethernet

Channel
Access

Sequencer

Scanners

Monitors
Database
Access IOC Database

Driver or
Device

Interrupt
Routines

Record Support

Device Support

Device
Drivers

VME
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 19

Chapter 3: EPICS Overview
IOC Software Components

dent

ibing the

articular
e record

ause they

routines.

Periodic,

d.

routine

driver

external

rd support
ntains no
upport
device
• Channel Access: The interface between the external world and the IOC. It provides a network indepen
interface to database access.

• Monitors : Database monitors are invoked when database field values change.

• Sequencer: A finite state machine.

Let’s briefly describe the major components of the IOC and how they interact.

3.4.1 IOC Database

The heart of each IOC is a memory resident database together with various memory resident structures descr
contents of the database. EPICS supports a large and extensible set of record types, e.g.ai (Analog Input),ao (Analog
Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record types and others are specific to p
record types. Every record has a record name and every field has a field name. The first field of every databas
holds the record name, which must be unique across all IOCs that are attached to the same TCP/IP subnet.

Data structures are provided so that the database can be accessed efficiently. Most software components, bec
access the database via database access routines, do not need to be aware of these structures.

3.4.2 Database Access

With the exception of record and device support, all access to the database is via the channel or database access
See Chapter 15, “Runtime Database Access” on page 169 for details.

3.4.3 Database Scanning

Database scanning is the mechanism for deciding when to process a record. Five types of scanning are possible:
Event, I/O Event, Passive and Scan Once.

• Periodic: A request can be made to process a record periodically. A number of time intervals are supporte

• Event: Event scanning is based on the posting of an event by any IOC software component. The actual sub
call is:

post_event(event_num)

• I/O Event: The I/O event scanning system processes records based on external interrupts. An IOC device
interrupt routine must be available to accept the external interrupts.

• Passive: Passive records are processed as a result of linked records being processed or as a result of
changes such as Channel Access puts.

• Scan Once: In order to provide for caching puts, The scanning system provides a routinescanOnce which
arranges for a record to be processed one time.

3.4.4 Record Support, Device Support and Device Drivers

Database access needs no record-type specific knowledge, because each record-type has its associated reco
module. Therefore, database access can support any number and type of records. Similarly, record support co
device specific knowledge, giving each record type the ability to have any number of independent device s
modules. If the method of accessing the piece of hardware is more complicated than what can be handled by
support, then a device driver can be developed.

Record typesnot associated with hardware do not have device support or device drivers.
20 EPICS IOC Application Developer’s Guide

Chapter 3: EPICS Overview
Channel Access

ther than
all it.

ows a
types,

pics are

. Record
ctions):

tabase

records

ed when
s, alarm

monitors.

ach IOC
lients.
number

e.
The IOC software is designed so that the database access layer knows nothing about the record support layer o
how to call it. The record support layer in turn knows nothing about its device support layer other than how to c
Similarly the only thing a device support layer knows about its associated driver is how to call it. This design all
particular installation and even a particular IOC within an installation to choose a unique set of record types, device
and drivers. The remainder of the IOC system software is unaffected.

Because an Application Developer can develop record support, device support, and device drivers, these to
discussed in greater detail in later chapters.

Every record support module must provide a record processing routine to be called by the database scanners
processing consists of some combination of the following functions (particular records types may not need all fun

• Input : Read inputs. Inputs can be obtained, via device support routines, from hardware, from other da
records via database links, or from other IOCs via Channel Access links.

• Conversion: Conversion of raw input to engineering units or engineering units to raw output values.

• Output : Write outputs. Output can be directed, via device support routines, to hardware, to other database
via database links, or to other IOCs via Channel Access links.

• Raise Alarms: Check for and raise alarms.

• Monitor : Trigger monitors related to Channel Access callbacks.

• Link : Trigger processing of linked records.

3.4.5 Channel Access

Channel Access is discussed in the next section.

3.4.6 Database Monitors

Database monitors provide a callback mechanism for database value changes. This allows the caller to be notifi
database values change without constantly polling the database. A mask can be set to specify value change
changes, and/or archival changes.

At the present time only Channel Access uses database monitors. No other software should use the database
The monitor routines will not be described because they are of interest only to Channel Access.

3.5 Channel Access
Channel Access provides network transparent access to IOC databases. It is based on a client/ server model. E
provides a Channel Access server which is willing to establish communication with an arbitrary number of c
Channel Access client services are available on both OPIs and IOCs. A client can communicate with an arbitrary
of servers.

3.5.1 Client Services

The basic Channel Access client services are:

• Search: Locate the IOCs containing selected process variables and establish communication with each on

• Get: Get value plus additional optional information for a selected set of process variables.

• Put: Change the values of selected process variables.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 21

Chapter 3: EPICS Overview
OPI Tools

en the
quested:
provide

y be

esign
Channel

types.

generated
ntaining
riables are

ach IOC
stablishes

a call to

hes) the
breaks

estarts.

they use
• Add Event: Add a change of state callback. This is a request to have the server send information only wh
associated process variable changes state. Any combination of the following state changes can be re
change of value, change of alarm status and/or severity, and change of archival value. Many record types
hysteresis factors for value changes.

In addition to requesting process variable values, any combination of the following additional information ma
requested:

• Status: Alarm status and severity.

• Units: Engineering units for this process variable.

• Precision: Precision with which to display floating point numbers.

• Time: Time when the record was last processed.

• Enumerated: A set of ASCII strings defining the meaning of enumerated values.

• Graphics: High and low limits for producing graphs.

• Control : High and low control limits.

• Alarm : The alarmHIHI , HIGH, LOW, andLOLO values for the process variable.

It should be noted that Channel Access doesnot provide access to database records as records. This is a deliberate d
decision. This allows new record types to be added without impacting any software that accesses the database via
Access, and it allows a Channel Access client to communicate with multiple IOCs having differing sets of record

3.5.2 Search Server

Channel Access provides an IOC resident server which waits for Channel Access search messages. These are
when a Channel Access client (for example when an Operator Interface task starts) searches for the IOCs co
process variables the client uses. This server accepts all search messages, checks to see if any of the process va
located in this IOC, and, if any are found, replies to the sender with and “I have it” message.

3.5.3 Connection Request Server

Once the process variables have been located, the Channel Access client issues connection requests for e
containing process variables the client uses. The connection request server, in the IOC, accepts the request and e
a connection to the client. Each connection is managed by two separate tasks:ca_get andca_put . Theca_get and
ca_put requests map todbGetField anddbPutField database access requests.ca_add_event requests result in
database monitors being established. Database access and/or record support routines trigger the monitors via
db_post_event .

3.5.4 Connection Management

Each IOC provides a connection management service. When a Channel Access server fails (e.g. its IOC cras
client is notified and when a client fails (e.g. its task crashes) the server is notified. When a client fails, the server
the connection. When a server crashes, the client automatically re-establishes communication when the server r

3.6 OPI Tools
EPICS provides a number of OPI based tools. These can be divided into two groups based on whether or not
Channel Access. Channel Access tools are real time tools, i.e. they are used to monitor and control IOCs.
22 EPICS IOC Application Developer’s Guide

Chapter 3: EPICS Overview
EPICS Core Software

.

ith all
dates the

tool can

ntrol

longer
r being

file
process

 tool.

nition

nents of
3.6.1 Examples of channel Access Tools

A large number of Channel Access tools have been developed. The following are some representative examples

• MEDM : Motif version of combined display manager and display editor.

• DM : Display Manager. Reads one or more display list files created by EDD, establishes communication w
necessary IOCs, establishes monitors on process variables, accepts operator control requests, and up
display to reflect all changes.

• ALH : Alarm Handler. General purpose alarm handler driven by an alarm configuration file.

• AR: Archiver. General purpose tool to acquire and save data from IOCs.

• Sequencer: Runs in an IOC and emulates a finite state machine.

• BURT: Backup and Restore Tool. General purpose tool to save and restore Channel Access channels. The
be run via Unix commands or via a Graphical User Interface.

• KM : Knob Manager - Channel Access interface for the sun dials (a set of 8 knobs)

• PROBE: Allows the user to monitor and/or change a single process variable specified at run time.

• CAMATH : Channel Access interface for Mathematica.

• CAWINGZ : Channel Access interface for Wingz.

• IDL/PVWAVE Channel Access Interfaces exist for these products.

• TCL/TK Channel Access Interface for these products.

• CDEV - A library designed to provide a standard API to one or more underlying packages, typically co
system interfaces. CDEV provides a Channel Access service.

3.6.2 Examples of other OPI Tools
• JDCT: Java Database Configuration Tool. A JAVA based toll for creating run time databases.

• GDCT: Graphical Database Configuration Tool. Used to create a run time database for an IOC. This is no
being developed since it is based on an open source software system called unidraw, which is no longe
supported.

• EDD: Display Editor. This tool is used to create a display list file for the Display Manager. A display list
contains a list of static, monitor, and control elements. Each monitor and control element has an associated
variable.

• SNC: State Notation Compiler. It generates a C program that represents the states for the IOC Sequencer

• Database Tools -Tools are provided which generate C include files from menu and record type database defi
files.

• Source/Release: EPICS provides a Source/Release mechanism for managing EPICS.

3.7 EPICS Core Software
EPICS consists of a set of core software and a set of optional components. The core software, i.e. the compo
EPICS without which EPICS would not function, are:

• Channel Access - Client and Server software

• IOC Database

• Scanners

• Monitors

• Database Definition Tools

• Source/Release
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 23

Chapter 3: EPICS Overview
EPICS Core Software

uch as
evice
support
All other software components are optional. Of course, any application developer would be crazy to ignore tools s
MEDM (or EDD/DM). Likewise an application developer would not start from scratch developing record and d
support. Most OPI tools do not, however, have to be used. Likewise any given record support module, device
module, or driver could be deleted from a particular IOC and EPICS will still function.
24 EPICS IOC Application Developer’s Guide

ments,

EPICS
> areas

reated

to
build

nu and

are the

raries
Chapter 4: EPICS Build Facility

Janet Anderson is the author of this chapter.

4.1 Overview
This chapter describes the EPICS build facility including directory structure, environment and system require
configuration files, Makefiles, and related build tools.

4.1.1 <top> Directory structure

EPICS software can be divided into multiple <top> areas. Examples of <top> areas are EPICS base itself,
extensions, and simple or complicated IOC applications. Each <top> may be maintained separately. Different <top
can be on different releases of external software such as EPICS base releases.

A <top> directory has the following directory structure:

 <top>/
 Makefile
 configure/
 dir1/
 dir2/
 ...

where configure is a directory containing build configuration files and a Makefile and where dir1, dir2, ... are user c
subdirectory trees with Makefiles and source files to be built.

4.1.2 Install Directories

The following directories may also exist in the installation directory, $(INSTALL_LOCATION). which defaults
$(TOP), the <top> directory. They are created in the <top> directory by the build and contain the installed
components.

• dbd - Installed Database Definitions Directory.

• include - The directory into which C header files are installed. These header files may be generated from me
record type definitions.

• bin - This directory contains a subdirectory for the host architecture and for each target architecture. These
directories in which executables, binaries, etc. are installed.

• lib - This directory contains a subdirectory for each host architecture. These are the directories in which lib
are installed.

• db - This is the directory into which record instance, template, and substitution files are installed.

• html - This is the directory into which html documentation is installed.

• templates - The directory into which template files are installed.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 25

Chapter 4: EPICS Build Facility
Overview

to be
ion files

ed in a

be

sed to
4.1.3 Elements of build system

The main ingredients of the build system are:

• A set of configuration files and tools provided in the EPICS base/configure directory

• A corresponding set of configuration files in the <top>/configure directory of a non-base directory structure
built. The makeBaseApp.pl and makeBaseExtension.pl scripts create these files. Many of these configurat
just include a file of the same name from the base/configure directory.

• Makefiles in each directory of the <top> directory structure to be built

4.1.4 Features

The principal features of the build system are:

• Requires a single Makefile in each directory of a <top> directory structure

• Supports both host os native compiler and GNU compiler

• Supports building multiple types of software (libraries, executables, databases, java class files, etc.) stor
single directory tree.

• Supports building EPICS base, extensions and IOC applications.

• Supports multiple host and target operating system - architecture combinations.

• Existing configuration files need no changes at most sites

• Allows builds for all hosts and targets within a single <top> source directory tree.

• Allows sharing of components such as special record/device/drivers across <top> areas.

• gnumake is the only command used to build a <top> area.

4.1.5 Environment Prerequisites

Only one environment variable,EPICS_HOST_ARCH, is required to build EPICS <top> areas. This variable should
set to be your workstation's operating system - architecture combination. Examples aresolaris-sparc, linux-
x86, win32-x86 . The EPICS base distribution tar file contains a startup script, EpicsHostArch, which can be u
define this variable.

4.1.6 System Prerequisites

Before you can build EPICS components your host system must have the following software installed:

• Perl version 5 or greater

• GNU make, version 3.7 or greater

• C++ compiler (host operating system vendor's compiler or GNU compiler)

• If you will be building EPICS components for vxWorks targets you will also need:

• Tornado II and one or more board support packages. Consult the vxWorks documentation for details.
26 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefiles

gure.
ible to

files,
llowing

, and
rectory
uild the

/lib/
4.2 Makefiles

4.2.1 Name

The name of the makefile in each directory must be Makefile.

4.2.2 Included Files

Makefiles normally include files from <top>/configure. Thus the makefile "inherits" rules and definitions from confi
The files in <top>/configure may in turn include files from another <top>/configure. This technique makes it poss
share make variables and even rules across <top> directories.

4.2.3 Contents of Makefiles

Makefiles in directories containing subdirectories

A Makefile in this type of directory must define where <top> is relative to this directory, include <top>/configure
and specify the subdirectories in the desired order of make execution. Running gnumake in a directory with the fo
Makefile lines will cause gnumake to be executed in <dir1> first and then <dir2>.

TOP=../..
include $(TOP)/configure/CONFIG
DIRS += <dir1> <dir2>
include $(TOP)/configure/RULES_DIRS

Makefiles in directories where components are to be built

A Makefile in this type of directory must define where <top> is relative to this directory, include the configure files
specify the target component definitions. Optionally it may contain user defined rules. Running gnumake in a di
with this type of Makefile will cause gnumake to create an O.<arch> subdirectory and then execute gnumake to b
defined components in this subdirectory. It contains the following lines:

TOP=../../..
include $(TOP)/configure/CONFIG

<component definition lines>
include $(TOP)/configure/RULES

<optional rules definitions>

4.2.4 Simple Makefile examples

Create an IOC library named asIoc from the source file asDbLib.cand install it into the $(INSTALL_LOCATION)
<target arch> directory.

TOP=../../..
include $(TOP)/configure/CONFIG
LIBRARY_IOC += asIoc
asIoc_SRCS += asDbLib.c
include $(TOP)/configure/RULES
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 27

Chapter 4: EPICS Build Facility
Make

urce files
to the

hich is
ystems,

in the

led files

lication,

ke in

get is
For each Host type target architecture, create an executable named catest from the catest1.c and catest2.c so
linking with the existing EPICS base ca and Com libraries, and then install the catest executable in
$(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../../..
include $(TOP)/configure/CONFIG
PROD = catest
catest_SRCS += catest1.c catest2.c
catest_LIBS = ca Com
include $(TOP)/configure/RULES

4.3 Make

4.3.1 Make vs. gnumake

EPICS provides an extensive set of make rules. These rules only work with the GNU version of make, gnumake, w
supplied by the Free Software Foundation. Thus, on most Unix systems, the native make will not work. On some s
e.g. Linux, GNU make may be the default. This manual always uses gnumake in the examples.

4.3.2 Frequently used Make commands

NOTE: It is possible to invoke the following commands for a single architecture by appending .<arch> to the target
command.

The most frequently used make commands are:

gnumake
This rebuilds and installs everything that is not up to date.
NOTE: Executing gnumake without arguments is the same as gnumake install

gnumake <arch>
This rebuilds and installs everything that is not up to date for a single specified arch.
NOTE: This is the same as gnumake install.<arch>

gnumake clean
This can be used to save disk space by deleting the O.<arch> directories, but does not remove any instal
from the bin, db, dbd etc. directories. .<arch> can be appended to invoke clean for a single architecture.

gnumake rebuild
This is the same as gnumake clean install. If you are unsure about the state of the generated files in an app
just execute gnumake rebuild.

gnumake clean uninstall
This command can be executed from the <top> directory only. It will remove everything installed by gnuma
the bin, db, dbd, etc. directories.

gnumake tar
This command makes a tar image of the entire <top> directory (excluding any CVS directories). This tar
available on Unix type hosts only.
28 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions

encies

e dbd

stall
gnumake depends
This command creates a DEPENDS file in the O.<arc> subdirectory containing a list of header file depend
for each c or c++ source file. This target is not available on Win32 hosts.

4.3.3 Make targets

The following is a summary of targets that can be specified for gnumake:

• <action>

• <arch>

• <action>.<arch>

• <dir>

• <dir>.<action>

• <dir>.<arch>

• <dir>.<action>.<arch>

where:

<arch> ia solaris-sparc, vxWorks-68040, win32-x86, etc. - builds named architecture only.
<action> is clean, inc, install, build, rebuild, buildInstall, depends, or uninstall
NOTE: uninstall can only be specified at <top>
<dir> is subdirectory name

4.4 Makefile definitions
The following components can be defined in a Makefile to be built when gnumake is invoked:

4.4.1 Breakpoint Tables

For each breakpoint table file, bpt<table name>.dbd, add the definition

BPTS += bpt<table name>.dbd

The following Makefile will create a bptTypeJdegC.dbd file from an existing bptTypeJdegC.data file and install th
file into the $(INSTALL_LOCATION)/dbd directory.

TOP=../../..
include $(TOP)/configure/CONFIG
BPTS = bptTypeJdegC.dbd
include $(TOP)/configure/RULES

4.4.2 Record Type Definitions

For each new record type, the following definition should be added to the makefile:

RECTYPES += <rectype>Record.h

The associated record definition file <rectype>Record.dbd must exist.

The following Makefile will create an xxxRecord.h header file from an existing xxxRecord.dbd file and in
xxxRecord.h into $(INSTALL_LOCATION)/include and xxxRecord.dbd into $(INSTALL_LOCATION)/dbd.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 29

Chapter 4: EPICS Build Facility
Makefile definitions

stall

lowing

e.dbd

e.dbd
TOP=../../..
include $(TOP)/configure/CONFIG
RECTYPES = xxxRecord.h
include $(TOP)/configure/RULES

4.4.3 Menus

If a menu menu<name>.dbd file is present, then add the following definition:

MENUS += menu<name>.h

The header file will be created from the menu dbd file and installed into <top>/include directory.

The following Makefile will create a menuConvert.h file from an existing menuConvert.dbd file and in
menuConvert.h to $(INSTALL_LOCATION)/include and menuConvert.dbd to $(INSTALL_LOCATION)/dbd.

TOP=../../..
include $(TOP)/configure/CONFIG
MENU = menuConvert.h
include $(TOP)/configure/RULES

4.4.4 Expanded Database Definition File

Files containing database definition files are expanded by utility dbExpand and installed into <top>/dbd. The fol
variables control the process:

DBDEXPAND += xxxInclude.dbd
DBDNAME = xxxApp.dbd
USER_DBDFLAGS += -I <include path>
USER_DBDFLAGS += -S <macro substitutions>

where the entries are:

DBDEXPAND

A list of files containing database definitions to be expanded. An example of a DBDEXPAND file is exampleInclud
containing the following lines

include "base.dbd"
include "xxxRecord.dbd"
device(xxx,CONSTANT,devXxxSoft,"SoftChannel")

DBDNAME

The name of the output file to contain the expanded definitions which will be installed into <top>/dbd.

USER_DBDFLAGS

Optional flags for dbExpand. Currently only an include path and macro substitution are supported.

The following Makefile will create an expanded dbd file named exampleApp.dbd from an existing exampleInclud
file and install exampleApp.dbd to the $(INSTALL_LOCATION)/dbd directory.

TOP=../../..
include $(TOP)/configure/CONFIG
DBDEXPAND = exampleInclude.dbd
DBDNAME = exampleApp.dbd
include $(TOP)/configure/RULES
30 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions

erate the

will be

must be
l be
ere are
e of any

ot listed

h>

ource
e file

not

rary,
4.4.5 Database Definition Files

The following line installs the named files into <top>/dbd without expansion.

DBDINSTALL += <name>.dbd

4.4.6 Database Files

For all these types of databases, the names of the database has to be specified. Make will figure out how to gen
files:

DB += xxx.db

Generates xxx.db depending on which source files exist. If xxx.db is template generated, the inflated database
installed.

DB += xxx.template xxx.substitutions

Generates and installs these files. If one or more xxx.substitutions files are to be created by script, the script name
placed in the CREATESUBSTITUTIONS variable (e.g. CREATESUBSTITUTIONS=mySubst.pl). This script wil
executed by gnumake with the prefix of the substitution file name to be generated as its argument. If (and only if) th
script generated substitutions files, the prefix of any inflated database's name may not equal the prefix of the nam
template used within the directory.

In order to record dependency information correctly all template files that are needed but not installed (i.e. those n
in DB), must be added to the USES_TEMPLATE variable:

USES_TEMPLATE += yyy.template
USES_TEMPLATE += $(SHARE)/installDb/zzz.template

If specified with a path (full or relative), the templates will be soft linked (UNIX) or copied (WIN) into the O.<arc
directory. After the first make run, template dependencies will be generated automatically.

4.4.7 Libraries

A library is created and installed into <top>/lib/<arch> by specifying it’s name and the name of either the object or s
files containing code for the library. An object or source file name can appear with or without a directory prefix. If th
has a directory prefix e.g. $(EPICS_BASE_BIN), it is taken from the specified location. If a directory prefix is
present, make will look in the source directory for a file with the speciffied name.

Definition of <osclass>: The architecture not including the processor. A few examples are:

vxWorks-68040 : The <osclass> is vxWorks. The <arch> is vxWorks-68040
solaris-sparc : The <osclass> is solaris. The <arch> is solaris-sparc.

vxWorks Note: For vxWorks, both an object module library, <name>.o, and a munched object module lib
<name>.munch, are created and both libraries are installed into <top>/bin/<arch>NOT <top>/lib/<arch>

4.4.7.1 Specifying the library name.

Any of the following can be specified:

LIBRARY += <name>
A library will be created for every target arch and installed into the <top>/lib/<arch> directory.

LIBRARY_<osclass> += <name>
Library <name>.will be created for all archs of the specified osclass.

LIBRARY_DEFAULT += <name>
Library <name> will be created for any arch that does not have a LIBRARY_<osclass> definition
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 31

Chapter 4: EPICS Build Facility
Makefile definitions

ass>

lass>

ss>

ave a
LIBRARY_IOC += <name>
Library <name> will be created for IOC type archs.

LIBRARY_IOC_<osclass> += <name>
Library <name>.will be created for all IOC type archs of the specified osclass.

LIBRARY_IOC_DEFAULT += <name>
Library <name> will be created for any IOC type arch that does not have a LIBRARY_IOC_<oscl
definition

LIBRARY_HOST += <name>
Library <name> will be created for HOST type archs.

LIBRARY_HOST_<osclass> += <name>
Library <name>.will be created for all HOST type archs of the specified osclass.

LIBRARY_HOST_DEFAULT += <name>
Library <name> will be created for any HOST type arch that does not have a LIBRARY_HOST_<osc
definition

4.4.7.2 Specifying Library object file names

Object file names, which doesnot need a suffix such as .o, are defined as follows:

<library name>_OBJS += <name>
Object files will be used for all builds of the named library)

<library name>_OBJS_<osclass> += <name>
Object files will be used in builds of the library for archs with the specified osclass.

<library name>_OBJS_DEFAULT += <name>
Object files will be used in builds of the library for archs without a <library name>_OBJS_<oscla
definition specified.

4.4.7.3 LIBOBJS definitions

Previous versions of epics (3.13 and before) accepted definitions like:

LIBOBJS += $(<support>_BIN)/xxx.o

These are gathered together in files such as baseLIBOBJS. To use such definitions include the definitions

-include ../baseLIBOBJS
<library name>_OBJS += $(LIBOBJS)

4.4.7.4 Specifying Library Source file names

Source file names, which must have a suffix, are defined as follows:

SRCS += <name>
Source files will be used for all defined libraries and products.

SRCS_<osclass> += <name>
Source files will be used for all defined libraries and products for all archs of the specified osclass.

SRCS_DEFAULT += <name>
Source files will be used for all defined libraries and products for any osclass that does not h
SRCS_<osclass> definition

LIBSRCS += <name>
Source files will be used for all libraries.

LIBSRCS_<osclass> += <name>
Source files will be used for all defined libraries for all archs of the specified osclass.

LIBSRCS_DEFAULT += <name>
32 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions

class>

rary

ill be

p>/bin/
Source files will be used for all defined libraries for any osclass that does not have a LIBSRCS_<os
definition

<library name>_SRCS += <name>
Source file will be used for the named library.

<library name>_SRCS_<osclass> += <name>
Source files will be used for named library for all archs of the specified osclass.

<library name>_SRCS_DEFAULT += <name>
Source files will be used for named library for any osclass that does not have a <lib
name>_SRCS_<osclass> definition

4.4.7.5 Library example:

LIBRARY_vxWorks += vxWorksOnly
LIBRARY_IOC += iocOnly
LIBRARY_HOST += hostOnly
LIBRARY += all

vxWorksOnly_OBJS += vxOnly1
vxWorksOnly_SRCS += vxOnly2.c
iocOnly_OBJS += iocOnly1
iocOnly_SRCS += iocOnly2.cpp
hostOnly_OBJS += host1
all_OBJS += all1
all_SRCS += all2.cpp

If the architectures defined in <top>/configure are solaris-sparc and vxWorks-68040 then the following libraries w
created:

• <top>/bin/vxWork-68040/vxWorksOnly.* : vxOnly1.o vxOnly2.o

• <top>/bin/vxWork-68040/iocOnly.* : iocOnly1.o iocOnly2.o

• <top>/lib/solaris-sparc/libiocOnly.a : iocOnly1.o iocOnly2.o

• <top>/lib/solaris-sparc/libhostOnly.a : host1.o

• <top>/bin/vxWork-68040/all.* : all1.o all2.o

• <top>/lib/solaris-sparc/liball.a : all1.o all2.o

4.4.8 Generate and install object Files

It is possible to generate and install object files not placed in LIBNAME by using definitions:

OBJS += <name>
OBJS_<osclass> += <name>
OBJS_DEFAULT += <name>
OBJS_IOC += <name>
OBJS_IOC_<osclass> += <name>
OBJS_IOC_DEFAULT += <name>
OBJS_HOST += <name>
OBJS_HOST_<osclass> += <name>
OBJS_HOST_DEFAULT += <name>

These will cause the specified file to be generated for the appropriate target arch and installed into <to
<target_arch>.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 33

Chapter 4: EPICS Build Facility
Makefile definitions

rchs
priate

me>.st
rce file
t or

ctory..
The following Makefile will create the abc object file for all target architectures, the object file def for all target a
except vxWorks, and the xyz object file for only the vxWorks target architecture and install them into the appro
$(INSTALL_LOCATION)/bin/<arch> directory.

TOP=../../..
include $(TOP)/configure/CONFIG
OBJS += abc
OBJS_vxWorks += xyz
OBJS_DEFAULT += def
include $(TOP)/configure/RULES

4.4.9 State Notation Programs

For each state notation program, add the definition:

<library_name>_SRCS += <name>.c

An object file will be created and linked into the specified library. The state notation programs must be called <na
or <name>.stt. The C preprocessor will be executed on <name>.st files before conversion. If a <name>.c sou
specified in a Makefile definition is not found in the source directory, Make will try to build it from <name>.s
<name>.stt files in the source directory.

4.4.10 Scripts, etc.

A definition of the form:

SCRIPTS += <name>

results in file <name> being installed from the src directory to all the <top>/bin/<arch> directories.

Definitions of the form:

SCRIPTS_DEFAULT += <name1>.h
SCRIPTS_<osclass> += <name2>.h

results in the files being installed from the src directory to the appropriate <top>/bin/<arch> directory.

4.4.11 Include files.

A definition of the form:

INC += <name>.h

results in file <name>.h being installed from the src directory to the <top>/include directory.

Definitions of the form:

INC_DEFAULT += <name>.h
INC_<osclass> += <name>.h

results in file <name>.h being installed from the src directory into the appropriate <top>/include/os/<osclass> dire

4.4.12 Html and Doc files

A definition of the form:

HTMLS_DIR = <dirname>
34 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions

ectory

ild it

name
appear
the

cified

ed into

an IOC

tory.

nition
HTMLS += <name>

results in file <name> being installed from the src directory to the <top>/html/<dirname> directory.

A definition of the form:

DOCS += <name>

results in file <name> being installed from the src directory to the <top>/doc directory.

4.4.13 Templates

Adding definitions of the form

TEMPLATES_DIR = <dirname>
TEMPLATES += <name>

results in the file <name> being installed from the src directory to the <top>/templates/<dirname> directory. If a dir
structure of template files is to be installed, the template file names may include a directory prefix.

4.4.14 Lex and yac

If a <name>.c source file specified in a Makefile definition is not found in the source directory, Make will try to bu
from <name>.y and <name>_lex.l files in the source directory.

4.4.15 Products

A product executable is created for each HOST type <arch> and installed into <top>/bin/<arch> by specifying it’s
and the name of either the object or source files containing code for the product. An object or source file name can
with or without a directory prefix. If the file has a directory prefix e.g. $(EPICS_BASE_BIN), it is taken from
specified location. If a directory prefix is not present, make will look in the source directory for a file with the spe
name.

PROD += <name>
<name>_SRC += <srcname>.c

results in file <name> being built for each HOST type <arch> from a <srcname>.c file and then <name> is install
the <top>/bin/<arch> directory.

PROD specifications in the Makefile are ignored for IOC only type arches unless PROD_<osclass> is specified for
only type arch.

4.4.15.1 Specifying the product name.

Any of the following can be specified:

PROD += <name>
A product will be created for every HOST type target arch and installed into the <top>/bin/<arch> direc

PROD_<osclass> += <name>
Product <name>.will be created for all archs of the specified osclass.

PROD_DEFAULT += <name>
Product <name> will be created for any HOST type arch that does not have a PROD_<osclass> defi

4.4.15.2 Specifying product object file names

Object file names, which donot need a suffix such as .o, are defined as follows:
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 35

Chapter 4: EPICS Build Facility
Makefile definitions

lass>

ave a

e a

prod

_DIR

ing all
<prod name>_OBJS += <name>
Object files will be used for all builds of the named product

<prod name>_OBJS_<osclass> += <name>
Object files will be used in builds of the product for archs with the specified osclass.

<prod name>_OBJS_DEFAULT += <name>
Object files will be used in builds of the product for archs without a <prodname>_OBJS_<osc
definition specified.

4.4.15.3 Specifying product source file names

Source file names, which must have a suffix, are defined as follows:

SRCS += <name>
Source files will be used for all defined libraries and products.

SRCS_<osclass> += <name>
Source files will be used for all defined libraries and products for all archs of the specified osclass.

SRCS_DEFAULT += <name>
Source files will be used for all defined libraries and products for any osclass that does not h
SRCS_<osclass> definition

PROD_SRCS += <name>
Source files will be used for all products.

PROD_SRCS_<osclass> += <name>
Source files will be used for all defined products for all archs of the specified osclass.

PROD_SRCS_DEFAULT += <name>
Source files will be used for all defined products for any osclass that does not hav
PROD_SRCS_<osclass> definition

<prod name>_SRCS += <name>
Source file will be used for the named product.

<prod name>_SRCS_<osclass> += <name>
Source files will be used for named product for all archs of the specified osclass.

<prod name> _SRCS_DEFAULT += <name>
Source files will be used for named product for any osclass that does not have a <
name>_SRCS_<osclass> definition

4.4.15.4 Specifying libraries to be linked when creating the product

For each library name specified which is not a system library nor a library from EPICS_BASE, a <library_name>
definition must be present in the Makefile to specify the location of the library.

Library names, which must not have a directory prefix nor a suffix, are defined as follows:

PROD_LIBS += <name>
Libraries to be used when linking all defined products.

PROD_LIBS_<osclass> += <name>
Libraries to be used or all archs of the specified osclasswhen linking all defined products f.

PROD_LIBS_DEFAULT += <name>
Libraries to be used for any osclass that does not have a PROD_LIBS_<osclass> definition when link
defined products.

USR_LIBS += <name>
Libraries to be used when linking all defined products.

USR_LIBS_<osclass> += <name>
Libraries to be used or all archs of the specified osclasswhen linking all defined products f.
36 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Makefile definitions

ing all

when

when

finition

ifference

class>

y.
USR_LIBS_DEFAULT += <name>
Libraries to be used for any osclass that does not have a USR_LIBS_<osclass> definition when link
defined products.

<prod name>_LIBS += <name>
Libraries to be used for linking the named product.

<prod name>_LIBS_<osclass> += <name>
Libraries will be used for all archs of the specified osclass for linking named product.

<prod name> _LIBS_DEFAULT += <name>
Libraries to be used for any osclass that does not have a <prod name>_LIBS_<osclass> definition
linking named product.

SYS_PROD_LIBS += <name>
System libraries to be used when linking all defined products.

SYS_PROD_LIBS_<osclass> += <name>
System libraries to be used for all archs of the specified osclass when linking all defined products.

SYS_PROD_LIBS_DEFAULT += <name>
System libraries to be used for any osclass that does not have a PROD_LIBS_<osclass> definition
linking all defined products.

<prod name>_SYS_LIBS += <name>
System libraries to be used for linking the named product.

<prod name>_SYS_LIBS_<osclass> += <name>
System libraries will be used for all archs of the specified osclass for linking named product.

<prod name>_SYS_LIBS_DEFAULT += <name>
System ibraries to be used for any osclass that does not have a <prod name>_LIBS_<osclass> de
when linking named product.

4.4.16 Test Products

Test products libraries and source and object files are specified in exactly the same way a regular products.The d
is that test products will not be installed into the <top>/bin/<arch> directories.

Any of the following can be specified:

TESTPROD += <name>
A test product will be created for every HOST type target arch.

TESTPROD_<osclass> += <name>
Test product <name>.will be created for all archs of the specified osclass.

TESTPROD_DEFAULT += <name>
Test product <name> will be created for any HOST type arch that does not have a PROD_<os
definition

4.4.17 Target files

A definition of the form:

TARGETS += <name>

results in the file <name> being built in the O.<arch> directory from existing rules and files in the source director
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 37

Chapter 4: EPICS Build Facility
Table of Makefile definitions

hout a
. If a

an be
ould be

sclass>
levent <

o

4.4.18 Bin install files

Definitions of the form:

BIN_INSTALLS += <name>
BIN_INSTALLS_DEFAULT += <name>
BIN_INSTALLS_<osclass> += <name>

result in files being installed to the appropriate <top>/bin/<arch> directory. The file <name> can appear with or wit
directory prefix. If the file has a directory prefix e.g. $(EPICS_BASE_BIN), it is copied from the specified location
directory prefix is not present, make will look in the source directory for the file.

4.4.19 TCL libraries

Definitions of the form:

TCLLIBNAME += <name>
TCLINDEX += <name>

result in the specified tcl files being installed to the <top>/lib/<arch> directory.

4.5 Table of Makefile definitions
Makefile.Host has many facilities for building host components. Definitions given below containing <osclass> c
used to provide settings for use when building for a specific os class, and the <osclass> part of the name sh
replaced by the os class concerned, e.g. solaris, vxWorks, etc. If a _DEFAULT setting is given but a particular <o
requires that the default not be used and the required setting is blank, the value "-nil-" should be assigned to the re
osclass> variable definition.

Build Option Description

Products to be built (host type archs only)

PROD products to be built (host type archs only)

PROD_<osclass> os specific products to build and install for host type archs only

PROD_DEFAULT products to build and install for host type archs only systems with n
PROD_<osclass> specified

Test products to be built (host type archs only)

TESTPROD test product names (without execution suffix) to build but not install

TESTPROD_<osclass> os class specific test product names to build but not install

TESTPROD_DEFAULT test products to build but not install for systems with no
TESTPROD_<osclass> specified

Libraries to be built

LIBRARY name of library to build and install. The name should NOT include a
prefix or extensione.g. specify Ca to build libCa.a on Unix,
Ca.lib,CaObj.li,b or Ca.dll on WIN32
38 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions

d

LIBRARY_<osclass> os specific libraries to build and install

LIBRARY_DEFAULT libraries to build and install for systems with no LIBRARY_<osclass>
specified

LIBRARY_IOC name of library to build and install for ioc type archs. The name shoul
NOT include a prefix or extension e.g. specify Ca to build libCa.a on
Unix, Ca.lib,CaObj.lib or Ca.dll on WIN32

LIBRARY_IOC_<osclass> os specific libraries to build and install for ioc type archs

LIBRARY_IOC_DEFAULT libraries to build and install for ioc type arch systems with no
LIBRARY_<osclass> specified

LIBRARY_HOST name of library to build and install for host type archs. The name should
NOT include a prefix or extension, e.g. specify Ca to build libCa.a on
Unix, Ca.lib, CaObj.lib or Ca.dll on WIN32

LIBRARY_HOST_<osclass> os class specific libraries to build and install for host type archs

LIBRARY_HOST_DEFAULT libraries to build and install for host type arch systems with no
LIBRARY_<osclass> specified

SHARED_LIBRARIES build shared libraries? Must be YES or NO

SHRLIB_VERSION shared library version number

Product and library source files

SRCS source files to build all PRODs and LIBRARYs

SRCS_<osclass> osclass specific source files to build all PRODs and LIBRARYs

SRCS_DEFAULT source file to build all PRODs and LIBRARYs for systems with no
SRCS_<osclass> specified

PROD_SRCS source files to build all PRODs

PROD_SRCS_<osclass> osclass specific source files to build all PRODs

PROD_SRCS_DEFAULT source files needed to build PRODs for systems with no
SRCS_<osclass> specified

LIBSRCS source files for building LIBRARY (e.g. LIBSRCS=la.c lb.c lc.c)

LIBSRCS_<osclass> os-specific library source files

LIBSRCS_DEFAULT library source files for systems with no LIBSRCS_<osclass> specified

<name>_SRCS source files to build a specific PROD or LIBRARY

<name>_SRCS_<osclass> os specific source files to build a specific PROD or LI|BRARY

<name>_SRCS_DEFAULT source files needed to build a specific PROD or LIBRARY for systems
with no <prod>_SRCS_<osclass> specified

Compiler flags

USR_CFLAGS C compiler flags for all systems

USR_CFLAGS_<osclass> os-specific C compiler flags

Build Option Description
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 39

Chapter 4: EPICS Build Facility
Table of Makefile definitions

)

USR_CFLAGS_DEFAULT C compiler flages for systems with no USR_CFLAGS_<osclass>
specified

<name>_CFLAGS <name>.c file specific C compiler flags (e.g. xxxRecord_CFLAGS=-g)

USR_CXXFLAGS C++ compiler flags for all systems

USR_CXXFLAGS_<osclass> os-specific C++ compiler flags

USR_CXXFLAGS_DEFAULT C++ compiler flags for systems with no USR_CXXFLAGS_<osclass>
specified

<name>_CXXFLAGS <name>.cpp file specific C++ compiler flags

USR_CPPFLAGS C pre-processor flags (for all makefile compiles)

USR_CPPFLAGS_<osclass> os specific cpp flags

USR_CPPFLAGS_DEFAULT cpp flags for systems with no USR_CPPFLAGS_<osclass> specified

<name>_CPPFLAGS file specific C pre-processor flags
(e.g. xxxRecord_CPPFLAGS=-DDEBUG)

USR_INCLUDES directories to search for include files with -I prefix
(e.g. -I$(EPICS_EXTENSIONS_INCLUDE))

<name>_INCLUDES directories to search for include files when building a specific object file
(e.g. -I$(MOTIF_INC))

HOST_WARN Are compiler warning messages desired for host type builds? (YES or
NO) (default is NO)

HOST_OPT Is host build compiler optimization desired (default is NO optimization)

CROSS_WARN C cross-compiler warning messages desired (YES or NO) (default NO

CROSS_OPT Is cross-compiler optimization desired (YES or NO) (default is NO
optimization)

CMPLR C compiler selection, TRAD, ANSI or STRICT (default is STRICT)

Linker options

USR_LDFLAGS linker options (for all makefile links)

USR_LDFLAGS_<osclass> os specific linker options (for all makefile links)

USR_LDFLAGS_DEFAULT linker options for systems with no USR_LDFLAGS_<osclass>
specified

<name>_LDFLAGS prod or library specific ld flags

<name>_OBJS object files (without file extension) needed for a specific prod or library

<name>_OBJS_<osclass> os-specific object files needed for a specific prod or library

<name>_OBJS_DEFAULT object files needed to link a specific prod or library for systems with no
<name>_OBJ_<osclass> specified

USR_LIBS load libraries (e.g. -lXt -lX11) (for all makefile links)

USR_LIBS_<osclass> os specific load libraries (for all makefile links)

Build Option Description
40 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Table of Makefile definitions
USR_LIBS_DEFAULT load libraries for systems with no USR_LIBS_<osclass> specified

<name>_LIBS prod or library specific ld libraries (e.g. probe_LIBS=X11 Xt)

<name>_LIBS_<osclass> os-specific libs needed to link a specific prod or library

<name>_LIBS_DEFAULT libs needed to link a specific prod or library for systems with no
<name>_LIBS_<osclass> specified

PROD_LIBS libs needed to link every PROD for all systems

PROD_LIBS_<osclass> os-specific libs needed to link every PROD

PROD_LIBS_DEFAULT libs needed to link every PROD for systems with no
PROD_LIBS_<osclass> specified

<lib>_DIR directory to search for the specified lib. (For libs listed in PROD_LIBS,
<prod>_LIBS and USR_LIBS)

SYS_PROD_LIBS system libs needed to link every PROD for all systems

SYS_PROD_LIBS_<osclass> os-specific system libs needed to link every PROD

SYS_PROD_LIBS_DEFAULT system libs needed to link every PROD for systems with no
SYS_PROD_LIBS_<osclass> specified

<prod>_SYS_LIBS prod specific system ld libraries (e.g. m)

<prod>_SYS_LIBS_<osclass> os class specific system libs needed to link a specific prod

<prod>_SYS_LIBS_DEFAULT system libs needed to link a specific prod for systems with no
SYS_PROD_LIBS_<osclass> specified

STATIC_BUILD Is static build desired (YES or NO) (default is NO)

Header files to be installed

INC list of include files to install into $(INSTALL_DIR)/include

INC_<osclass> os specific includes to installed under $(INSTALL_DIR)/include/os/
<osclass>

INC_DEFAULT include files to install where no INC_<osclass> is specified

Perl, csh, tcl etc. script installation

SCRIPTS scripts to install for all systems

SCRIPTS_<osclass> os-specific scripts to install

SCRIPTS_DEFAULT scripts to install for systems with no SCRIPTS_<osclass> specified

TCLLIBNAME list of tcl scripts to install into $(INSTALL_DIR)/lib/<osclass> (Unix
hosts only)

TCLINDEX name of tcl index file to create from TCLLIBNAME scripts

Object files

OBJS object files to install for all system. The name in the following
definitions should NOT include an extension.

Build Option Description
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 41

Chapter 4: EPICS Build Facility
Table of Makefile definitions
OBJS_<osclass> os-specific object files to install.

OBJS_DEFAULT object files to install for systems with no OBJS_<osclass> specified..

OBJS_IOC names of object file to build and install for ioc type archs.

OBJS_IOC_<osclass> os specific object files to build and install for ioc type archs

OBJS_IOC_DEFAULT object files to build and install for ioc type arch systems with no
OBJS_<osclass> specified

OBJS_HOST object files to build and install for host type archs. T

OBJS_HOST_<osclass> os class specific object files to build and install for host type archs

OBJS_HOST_DEFAULT object files to build and install for host type arch systems with no
OBJS_<osclass> specified

Documentation

DOCS list of text files to be installed into the $(INSTALL_DIR)/doc directory

HTMLS_DIR name install Hypertext directory name i.e. $(INSTALL_DIR)/html/
$(HTMLS_DIR)

HTMLS list of hypertext files to be installed into the $(INSTALL_DIR)/html/
$(HTMLS_DIR) directory

TEMPLATES_DIR template directory to be created as $(INSTALL_DIR)/templates/
$(TEMPLATE_DIR)

TEMPLATES list of template files to be installed into $(TEMPLATE_DIR)

Options for other programs

YACCOPT yacc options

LEXOPT lex options

SNCFLAGS state notation language, snc, options

<prod>_SNCFLAGS product specific state notation language options

E2DB_FLAGS e2db options

SCH2EDIF_FLAGS sch2edif options

RANLIBFLAGS ranlib options

Facilities for building Java programs

CLASSES names of Java classes to be built and installed

TESTCLASSES names of Java classes to be built

PACKAGE names of Java package to be installed

JAR name of Jar file to be built

JAR_INPUT names of files to be included in JAR

Build Option Description
42 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Configuration Files

sion.h

efs.h
4.6 Configuration Files

4.6.1 Base Configure Directory

The base/configure directory has the following directory structure:

base/
configure/

os/
tools/

4.6.2 Base Configure File Descriptions

The configure files contain definitions and make rules to be included in the various makefiles.

CONFIG.CrossCommon
This file contains definitions for all hosts and all targets for a cross build (host different than target).

CONFIG_ADDONS
This file contains definitions which setup the variables that have <osclass> and DEFAULT options.

CONFIG_BASE
This file contains EPICS base specific definitions.

CONFIG_BASE_VERSION
This file contains definitions for the version number of EPICS base. This file is used for creating epicsVer
which is installed into base/include.

CONFIG_COMMON
This file contains definitions common to all builds.

CONFIG_ENV
This file contains default definitions of the EPICS environment variables. This file is used for creating envD
which is installed into base/include.

MANIFEST name of manifest file for JAR

Facilities for Windows 95/NT resource (.rc) files

RCS resource files needed to build every PROD

<prod>_RCS resource files needed to build a specific PROD

<prod>_RCS_<osclass> os specific resource files to build a specific PROD

Other definitions:

USER_VPATH list of directories

BIN_INSTALLS files in any directory to install to $(INSTALL_BIN)

TARGETS files to create but not install

INSTALL_LOCATION installation directory (defaults to $(TOP))

Build Option Description
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 43

Chapter 4: EPICS Build Facility
Configuration Files

n is:

ating

itions

base.

ed from

file is

the

tory is
l arch

l host

new file
s in a
on.

top>
CONFIG_SITE
This is the file in which you add to or modify make variables in EPICS base. A definition normally overridde

CROSS_COMPILER_TARGET_ARCHS =
CONFIG_SITE_ENV

This file contains defaults for site specific definitions of EPICS environment variables. This file is used for cre
envDefs.h which is installed into base/include.

CONFIG
This is the file which contains include statements for all the other configure files. You can override any defin
by putting override definitions at the end of this file.

RELEASE
This file specifies the location of external products such as Tornado II and external <tops> such as EPICS

RULES
This file just includes the appropriate rules configuration file.

RULES.Db
This file contains rules for building and installing database and database definition files. Databases generat
templates and/or CapFast schematics are supported.

RULES_ARCHS
This file contains definitions and rules which allow building the make target for each target architecture.

RULES_BUILD
This is a file containing the build rules for the Makefiles

RULES_DIRS
This file contains definitions and rules which allow building the make targets in each subdirectory. This
included by Makefiles in directories with subdirectories to be built.

RULES_JAVA
This file contains definitions and rules which allow building java class files and java jar files.

RULES_TOP
This file contains the rules specific to a <top> level directory e.g. uninstall and tar. It also includes
RULES_DIRS file.

4.6.3 Base configure/os File Descriptions

The configure/os directory contains os specific make definitions. The naming convention for the files in this direc
CONFIG.<host>.<target> where <host> is either the arch for the host system or Common which means al
combinations and <target> is either the arch for the build target system or Common for all build target systems.

For example, the file CONFIG.Common.vxWorks-pentium will contain make definitions to be used for builds on al
systems when building for a vxWorks-pentium target system.

Also, if a group of host or target files have the same make definitions these common definitions can be moved to a
which is then included in each host or target file. An example of this is all Unix hosts which have common definition
CONFIG.UnixCommon.Common file and all vxWorks targets with definitions in CONFIG.Common.vxWorksComm

4.6.4 Base configure/tool File Descriptions

The configure/tools directory contains Perl script tools used for the build. The tools currently in this directory are:

cp.pl
This Perl script copies an existing file.

installEpics.pl
This is a Perl script that installs build created files into the install directories.

makeConfigAppInclude.pl
This Perl script generates include directory, bin directory, and library directory definitions from the external <
and product definitions in the RELEASE file. These definitions are included into the CONFIG file.
44 EPICS IOC Application Developer’s Guide

Chapter 4: EPICS Build Facility
Configuration Files

s and

uctors

otation
makeDbDepends.pl
This is a perl script that generates make dependencies from substitutions files.

makeIocCdCommands.pl
This is a perl script that generates a cdCommands file for use by IOCs.

makeMakefile.pl
This is a perl script that creates a Makefile in the created O.<arch> directories.

makeMakefileInclude.pl
This perl script creates a file to be included by Makefiles. This file contains a build target's specific definition
dependencies.

mkdir.pl
This perl script creates a directory like the Unix mkdir command.

munch.pl
This is a perl script that creates a ctdt.c file for vxWorks target arch builds which lists the c++ static constr
and destructors. See munching in the vxWorks documentation for more information.

mv.pl
This perl script moves an existing file.

replaceVAR.pl
This is a perl script that changes VAR(xxx) style macros in CapFast generated databases into the $(xxx) n
used in EPICS databases.

rm.pl
This perl script quietly removes an existing file.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 45

Chapter 4: EPICS Build Facility
Configuration Files
46 EPICS IOC Application Developer’s Guide

lated
eously

rocessed.
alue of

auses
.

rce a

link is

es the
ssued.
Chapter 5: Database Locking, Scanning, And
Processing

5.1 Overview
Before describing particular components of the IOC software, it is helpful to give an overview of three closely re
topics: Database locking, scanning, and processing. Locking is done to prevent two different tasks from simultan
modifying related database records. Database scanning is the mechanism for deciding when records should be p
The basics of record processing involves obtaining the current value of input fields and outputting the current v
output fields. As records become more complex so does the record processing.

One powerful feature of the DATABASE is that records can contain links to other records. This feature also c
considerable complication. Thus, before discussing locking, scanning, and processing, record links are described

5.2 Record Links
A database record may contain links to other records. Each link is one of the following types:

• INLINK
OUTLINK
INLINKs and OUTLINKs can be one of the following:

• constant link
Not discussed in this chapter

• database link
A link to another record in the same IOC.

• channel access link
A link to a record in another IOC. It is accessed via a special IOC client task. It is also possible to fo
link to be a channel access link even it references a record in the same IOC.

• hardware link
Not discussed in this chapter

• FWDLINK
A forward link refers to a record that should be processed whenever the record containing the forward
processed. The following types are supported:

• constant link
Ignored.

• database link
A link to another record in the same IOC.

• channel access link
A link to a record in another IOC or a link forced to be a channel access link. Unless the link referenc
PROC field it is ignored. If it does reference the PROC field a channel access put with a value of 1 is i
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 47

Chapter 5: Database Locking, Scanning, And Processing
Database Links

record
by the

ore
a call

d like a

put
output
r case,

ddition
initially 0,
s the
s make
nitors are
the new
highest

ected.

sks. In
Links are defined in filelink.h .

NOTE: This chapter discusses mainly database links.

5.3 Database Links
Database links are referenced by calling one of the following routines:

• dbGetLink : The value of the field referenced by the input link retrieved.

• dbPutLink : The value of the field referenced by the output link is changed.

• dbScanPassive: The record referred to by the forward link is processed if it is passive.

A forward link only makes sense when it refers to a passive record that the should be processed when the
containing the link is processed. For input and output links, however, two other attributes can be specified
application developer, process passive and maximize severity.

5.3.1 Process Passive

Process passive (PP or NPP), is eitherTRUEor FALSE. It determines if the linked record should be processed bef
getting a value from an input link or after writing a value to an output link. The linked record will be processed, via
to dbProcess , only if the record is a passive record and process passive isTRUE.

NOTE: Three other options may also be specified: CA, CP, and CPP. These options force the link to be handle
Channel Access Link. See last section of this chapter for details.

5.3.2 Maximize Severity

Maximize severity (MSor NMS), is TRUEor FALSE. It determines if alarm severity is propagated across links. For in
links the alarm severity of the record referred to by the link is propagated to the record containing the link. For
links the alarm severity of the record containing the link is propagated to the record referred to by the link. In eithe
if the severity is changed, the alarm status is set toLINK_ALARM.

The method of determining if the alarm status and severity should be changed is called ”maximize severity”. In a
to its actual status and severity, each record also has a new status and severity. The new status and severity are
which meansNO_ALARM. Every time a software component wants to modify the status and severity, it first check
new severity and only makes a change if the severity it wants to set is greater than the current new severity. If it doe
a change, it changes the new status and new severity, not the current status and severity. When database mo
checked, which is normally done by a record processing routine, the current status and severity are set equal to
values and the new values reset to zero. The end result is that the current alarm status and severity reflect the
severity outstanding alarm. If multiple alarms of the same severity are present the status reflects the first one det

5.4 Database Locking
The purpose of database locking is to prevent a record from being processed simultaneously by two different ta
addition, it prevents ”outside” tasks from changing any field while the record is being processed.

The following routines are provided for database locking.

dbScanLock(precord);
48 EPICS IOC Application Developer’s Guide

Chapter 5: Database Locking, Scanning, And Processing
Database Scanning

o other
d

wards.

of it.

rocessed

calls
of

gain,

.

dbScanUnlock(precord);

The basic idea is to calldbScanLock before accessing database records and callingdbScanUnlock afterwords.
Because of database links (Input, Output, and Forward) a modification to one record can cause modification t
records. Records linked together are placed in the same lock set.dbScanLock locks the entire lock set not just the recor
requested.dbScanUnlock unlocks the entire set.

The following rules determine when the lock routines must be called:

1. The periodic, I/O event, and event tasks lock before and unlock after processing:

2. dbPutField locks before modifying a record and unlocks afterwards.

3. dbGetField locks before reading and unlocks afterwards.

4. Any asynchronous record support completion routine must lock before modifying a record and unlock after

All records linked viaOUTLINKs andFWDLINKsare placed in the same lock set. Records linked viaINLINK s with
process_passive or maximize_severity TRUE are also forced to be in the same lock set.

5.5 Database Scanning
Database scanning refers to requests that database records be processed. Four types of scanning are possible:

1. Periodic - Records are scanned at regular intervals.

2. I/O event - A record is scanned as the result of an I/O interrupt.

3. Event - A record is scanned as the result of any task issuing apost_event request.

4. Passive- A record is scanned as a result of a call todbScanPassive . dbScanPassive will issue a record
processing request if and only if the record is passive and is not already being processed.

A dbScanPassive request results from a task calling one of the following routines:

• dbScanPassive: Only record processing routines,dbGetLink , dbPutLink , and dbPutField call
dbScanPassive . Record processing routines call it for each forward link in the record.

• dbPutField: This routine changes the specified field and then, if the field has been declaredprocess_passive ,
calls dbScanPassive . Each field of each record type has the attributeprocess_passive declaredTRUEor
FALSE in the definition file. This attribute is a global property, i.e. the application developer has no control
This use ofprocess_passive is used only bydbPutField . If dbPutField finds the record already active
(this can happen to asynchronous records) and it is supposed to cause it to process, it arranges for it to be p
again, when the current processing completes.

• dbGetLink : If the link specifies process passive, this routine callsdbScanPassive . Whether or not
dbScanPassive is called, it then obtains the specified value.

• dbPutLink : This routine changes the specified field. Then, if the link specifies process passive, it
dbScanPassive . dbPutLink is only called from record processing routines. Note that this usage
process_passive is under the control of the application developer. IfdbPutLink finds the record already
active because of adbPutField directed to this record then it arranges for the record to be processed a
when the current processing completes.

All non-record processing tasks (Channel Access, Sequence Programs, etc.) calldbGetField to obtain database values
dbGetField just reads values without asking that a record be processed.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 49

Chapter 5: Database Locking, Scanning, And Processing
Record Processing

ord type

erly it
llowing

has an
events

infinite

s are

r. For
tc.
5.6 Record Processing
A record is processed as a result of a call todbProcess . Each record support module must supply a routineprocess .
This routine does most of the work related to record processing. Since the details of record processing are rec
specific this topic is discussed in greater detail in Chapter "Record Support" for details.

5.7 Guidelines for Creating Database Links
The ability to link records together is an extremely powerful feature of the IOC software. In order to use links prop
is important that the Application Developer understand how they are processed. As an introduction consider the fo
example :

Assume that A, B, and C are all passive records. The notation states that A has a forward link to B and B to C. C
input link obtaining a value from A. Assume, for some reason, A gets processed. The following sequence of
occurs:

1. A begins processing. While processing a request is made to process B.

2. B starts processing. While processing a request is made to process C.

3. C starts processing. One of the first steps is to get a value from A via the input link.

4. At this point a question occurs. Note that the input link specifies process passive (signified by thePP after
InLink). But process passive states that A should be processed before the value is retrieved. Are we in an
loop? The answer is no. Every record contains a fieldpact (processing active), which is setTRUEwhen record
processing begins and is not setFALSEuntil all processing completes. When C is processed A still haspact TRUE
and will not be processed again.

5. C obtains the value from A and completes its processing. Control returns to B.

6. B completes returning control to A

7. A completes processing.

This brief example demonstrates that database links needs more discussion.

5.7.1 Rules Relating to Database Links

5.7.1.1 Processing Order

The processing order is guaranteed to follow the following rules:

1. Forward links are processed in order from left to right and top to bottom. For example the following record
processed in the orderFLNK1, FLNK2, FLNK3, FLNK4 .

2. If a record has multiple input links (calculation and select records) the input is obtained in the natural orde
example if the fields are namedINPA, INPB, ..., INPL , then the links are read in the order A then B then C, e
Thus if obtaining an input results in a record being processed, the processing order is guaranteed.

InLink PP

A FwdLink B FwdLink C
50 EPICS IOC Application Developer’s Guide

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Creating Database Links

in the
two

ext two

specify

of events
3. All input and output links are processed before the forward link.

5.7.1.2 Lock Sets

All records, except for the conditions listed in the next paragraph, linked together directly or indirectly are placed
same lock set. WhendbScanLock is called the entire set, not just the specified record, is locked. This prevents
different tasks from simultaneously modifying records in the same lock set.

A linked record is not forced to be in the same lock set if all of the following conditions are true.

• The link is an INLINK (It is an input link)

• The link is NPP (It is no process passive)

• The link is NMS (It is no maximize severity)

• The number of elements is <-1 (The link references a scalar field)

QUESTION: Now that CA links exist why not force all records linked via DB links into the same lock set.

5.7.1.3 PACT - processing active

Each record contains a fieldpact . This field is setTRUEat the beginning of record processing and is not setFALSEuntil
the record is completely processed. In particular no links are processed withpact FALSE . This prevents infinite
processing loops. The example given at the beginning of this section gives an example. It will be seen in the n
sections thatpact has other uses.

5.7.1.4 Process Passive: Link option

Input and output links have an option called process passive. For each such link the application developer can
process passiveTRUE (PP) or process passiveFALSE (NPP). Consider the following example

Assume that all records except fanout are passive. When the fanout record is processed the following sequence
occur:

1. Fanout starts processing and asks that B be processed.

2. B begins processing. It callsdbGetLink to obtain data from A.

3. Because the input link has process passive true, a request is made to process A.

FLNK1 FLNK2

FLNK3 FLNK4

fanout

BFwdLink

FwdLink

fanout

InLink PP

InLink PP

A

C

EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 51

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Synchronous Records

ill only

rd

specify

ould be
record
ced by
rity is

er never
eciding

and for
4. A is processed, the data value fetched, and control is returned to B

5. B completes processing and control is returned to fanout. Fanout asks that C be processed.

6. C begins processing. It callsdbGetLink to obtain data from A.

7. Because the input link has process passiveTRUE, a request is made to process A.

8. A is processed, the data value fetched, and control is returned to C.

9. C completes processing and returns to fanout

10. The fanout completes

Note that A got processed twice. This is unnecessary. If the input link to C is declared no process passive then A w
be processed once. Thus we should have .

5.7.1.5 Process Passive: Field attribute

Each field of each database record type has an attribute calledprocess_passive . This attribute is specified in the
record definition file. It is not under the control of the application developer. This attribute is used only bydbPutField .
It determines if a passive record will be processed afterdbPutField changes a field in the record. Consult the reco
specific information in the record reference manual for the setting of individual fields.

5.7.1.6 Maximize Severity: Link option

Input and output links have an option called maximize severity. For each such link the application developer can
maximize severityTRUE (MS) or maximize severityFALSE (NMS).

When database input or output links are defined, the application developer can specify if alarm severities sh
propagated across links. For input links the severity is propagated from the record referred to by the link to the
containing the link. For output links the severity of the record containing the link is propagated to the record referen
the link. The alarm severity is transferred only if the new severity will be greater than the current severity. If the seve
propagated the alarm status is set equal toLINK_ALARM.

5.8 Guidelines for Synchronous Records
A synchronous record is a record that can be completely processed without waiting. Thus the application develop
needs to consider the possibility of delays when he defines a set of related records. The only consideration is d
when records should be processed and in what order a set of records should be processed.

The following reviews the methods available to the application programmer for deciding when to process a record
enforcing the order of record processing.

1. A record can be scanned periodically (at one of several rates), via I/O event, or via Event.

BFwdLink

FwdLink

fanout

InLink NPP

InLink PP

A

C

52 EPICS IOC Application Developer’s Guide

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

.

.

the
isabled

he root

essed
cord

w a

rbitrary

ecord is
lete until
utes of

t will be

record
2. For each periodic group and for each Event group the phase field can be used to specify processing order

3. The application programmer has no control over the record processing order of records in different groups

4. The disable fields (SDIS, DISA, andDISV) can be used to disable records from being processed. By letting
SDIS field of an entire set of records refer to the same input record, the entire set can be enabled or d
simultaneously. See the Record Reference Manual for details.

5. A record (periodic or other) can be the root of a set of passive records that will all be processed whenever t
record is processed. The set is formed by input, output, and forward links.

6. Theprocess_passive option specified for each field of each record determines if a passive record is proc
when adbPutField is directed to the field. The application developer must be aware of the possibility of re
processing being triggered by external sources ifdbPutFields are directed to fields that have
process_passive TRUE .

7. Theprocess_passive option for input and output links provides the application developer control over ho
set of records are scanned.

8. General link structures can be defined. The application programmer should be wary, however, of defining a
structures without carefully analyzing the processing order.

5.9 Guidelines for Asynchronous Records
The previous discussion does not allow for asynchronous records. An example is a GPIB input record. When the r
processed the GPIB request is started and the processing routine returns. Processing, however, is not really comp
the GPIB request completes. This is handled via an asynchronous completion routine. Lets state a few attrib
asynchronous record processing.

During the initial processing for all asynchronous records the following is done:

1. pact is setTRUE

2. Data is obtained for all input links

3. Record processing is started

4. The record processing routine returns

The asynchronous completion routine performs the following algorithm:

5. Record processing continues

6. Record specific alarm conditions are checked

7. Monitors are raised

8. Forward links are processed

9. pact is setFALSE.

A few attributes of the above rules are:

10. Asynchronous record processing does not delay the scanners.

11. Between the time record processing begins and the asynchronous completion routine completes, no attemp
made to again process the record. This is becausepact is TRUE. The routinedbProcess checkspact and does
not call the record processing routine if it isTRUE. Note, however, that ifdbProcess finds the record active 10
times in succession, it raises aSCAN_ALARM.

12. Forward and output links are triggered only when the asynchronous completion routine completes
processing.

With these rules the following works just fine:
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 53

Chapter 5: Database Locking, Scanning, And Processing
Guidelines for Asynchronous Records

en the

uence of

s B. B

s A. A

ops.

nly

pt that
s are not
WhendbProcess is called for record ASYN, processing will be started butdbScanPassive will not be called. Until
the asynchronous completion routine executes any additional attempts to process ASYN are ignored. Wh
asynchronous callback is invoked thedbScanPassive is performed.

Problems still remain. A few examples are:

5.9.1 Infinite Loop

Infinite processing loops are possible.

Assume both A and B are asynchronous passive records and a request is made to process A. The following seq
events occur.

1. A starts record processing and returns leavingpact TRUE .

2. Sometime later the record completion for A occurs. During record completion a request is made to proces
starts processing and control returns to A which completes leaving itspact field FALSE.

3. Sometime later the record completion for B occurs. During record completion a request is made to proces
starts processing and control returns to B which completes leaving itspact field FALSE.

Thus an infinite loop of record processing has been set up. It is up to the application developer to prevent such lo

5.9.2 Obtain Old Data

A dbGetLink to a passive asynchronous record can get old data.

If A is a passive asynchronous record then thedbGetLink request forcesdbProcess to be called for A.dbProcess
starts the processing and returns.dbGetLink then reads the desired value which is still old because processing will o
be completed at a later time.

5.9.3 Delays

Consider the following:

The second ASYN record will not begin processing until the first completes, etc. This is not really a problem exce
the application developer must be aware of delays caused by asynchronous records. Again, note that scanner
delayed, only records downstream of asynchronous records.

dbScanPasive BASYN

dbScanPasive
B

dbScanPasive
A

dbGetLink BA
54 EPICS IOC Application Developer’s Guide

Chapter 5: Database Locking, Scanning, And Processing
Cached Puts

etes what
his is a

does not

of

f this
etion
again
ally

ssing.
t is not

ch new

red in a
ffer and
5.9.4 Task Abort

If the processing task aborts and the watch dog task cleans up before the asynchronous processing routine compl
happens? If the asynchronous routine completes before the watch dog task runs everything is okay. If it doesn’t? T
more general question of the consequences of having the watchdog timer restart a scan task. EPICS currently
allow scanners to be automatically restarted.

5.10 Cached Puts
The rules followed bydbPutLink and dbPutField provide for ”cached” puts. This is necessary because
asynchronous records. Two cases arise.

The first results from adbPutField , which is a put coming from outside the database, i.e. Channel Access puts. I
is directed to a record that already haspact TRUE because the record started processing but asynchronous compl
has not yet occurred, then a value is written to the record but nothing will be done with the value until the record is
processed. In order to make this happendbPutField arranges to have the record reprocessed when the record fin
completes processing.

The second case results fromdbPutLink finding a record already active because of adbPutField directed to the
record. In this casedbPutLink arranges to have the record reprocessed when the record finally completes proce
Note that it could already be active because it appears twice in a chain of record processing. In this case i
reprocessed because the chain of record processing would constitute an infinite loop.

Note that the term caching not queuing is used. If multiple requests are directed to a record while it is active, ea
value is placed in the record but it will still only be processed once, i.e. last value wins.

5.11 Channel Access Links
A channel access link is:

1. A record link that references a record in a different IOC.

2. A link that the application developer forces to be a channel access link.

A channel access client task (dbCa) handles all I/O for channel access links. It does the following:

At IOC initialization dbCa issues channel access search requests for each channel access link.

For each input link it establishes a channel access monitor. It usesca_field_type andca_element_count when
it establishes the monitor. It also monitors the alarm status. Whenever the monitor is invoked the new data is sto
buffer belonging to dbCa. When iocCore or the record support module asks for data the data is taken from the bu
converted to the requested type.

dbScanPasiveASYN dbScanPasiveASYN . . .
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 55

Chapter 5: Database Locking, Scanning, And Processing
Channel Access Links

access

dbCa to

rticular
set of

all these

reason
nel access

K, and

OC. It

cessed

assive,

OC. It

with a

OC. It
For each output link, a buffer is allocated the first time iocCore/record support issues a put and a channel
connection has been made. This buffer is allocated according toca_field_type andca_element_count . Each
time iocCore/record support issues a put, the data is converted and placed in the buffer and a request is made to
issue a new ca_put.

Even if a link references a record in the same IOC it can be useful to force it to act like a channel access link. In pa
the records will not be forced to be in the same lock set. As an example consider a scan record that links to a
unrelated records, each of which can cause a lot of records to be processed. It is often NOT desirable to force
records into the same lock set. Forcing the links to be handled as channel access links solves the problem.

Because channel access links imply network activity, they are fundamentally different than database links. For this
and because channel access does not understand process passive or maximize severity, the semantics of chan
links are not the same as database links. Let’s discuss the channel access semantics of INLINK, OUTLIN
FWDLINK separately.

5.11.1 INLINK

The options for process passive are:

• PPor NPP - This link is made a channel access link because the referenced record is not found in the local I
is not possible to honor PP, thus the link always acts like NPP.

• CA - Force the link to be a channel access link.

• CP - Force the link to be a channel access link and also request that the record containing the link be pro
whenever a monitor occurs.

• CPP - Force the link to be a channel access link and also request that the record containing the link, if it is p
be processed whenever a monitor occurs.

Maximize Severity is honored.

5.11.2 OUTLINK

The options for process passive are:

• PPor NPP - This link is made a channel access link because the referenced record is not found in the local I
is not possible to honor PP thus the link always acts like NPP.

• CA - Force the link to be a channel access link.

Maximize Severity is not honored.

5.11.3 FWDLINK

A channel access forward link is honored only if it references the PROC field of a record. In that case a ca_put
value of 1 is written each time a forward link request is issued.

The options for process passive are:

• PPor NPP - This link is made a channel access link because the referenced record is not found in the local I
is not possible to honor PP thus it always acts like NPP.

• CA - Force the link to be a channel access link.

Maximize Severity is not honored.
56 EPICS IOC Application Developer’s Guide

never
Chapter 6: Database Definition

6.1 Overview
This chapter describes database definitions. The following definitions are described:

• Menu

• Record Type

• Device

• Driver

• Breakpoint Table

• Record Instance

Record Instances are fundamentally different from the other definitions. A file containing record instances should
contain any of the other definitions and vise-versa. Thus the following convention is followed:

• Database Definition File - A file that contains any type of definition except record instances.

• Record Instance File - A file that contains only record instance definitions.

This chapter also describes utility programs which operate on these definitions

Any combination of definitions can appear in a single file or in a set of files related to each other via include files.

6.2 Brief Summary of Database Definition Syntax
path "path"
addpath "path"
include "filename"
#comment
menu(name) {

include "filename"
choice(choice_name,"choice_value")
...

}

recordtype(record_type) {
include "filename"
field(field_name,field_type) {

asl(asl_level)
initial("init_value")
promptgroup(gui_group)
prompt("prompt_value")
special(special_value)
pp(pp_value)
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 57

Chapter 6: Database Definition
General Rules for Database Definition
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu(name)

}
...

}

device(record_type,link_type,dset_name,”choice_string”)
...

driver(drvet_name)
 ...

breaktable(name) {
raw_value, eng_value,
...

}

#The Following defines a Record Instance

record(record_type,record_name) {
include "filename"
field(field_name,"value")
...

}
#NOTE: GDCT uses grecord instead of record

6.3 General Rules for Database Definition

6.3.1 Keywords

The following are keywords, i.e. they may not be used as values unless they are enclosed in quotes:

path
addpath
include
menu
choice
recordtype
field
device
driver
breaktable
record
grecord
58 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
General Rules for Database Definition

ny string

by using

ical use

ss
ntil the

stance
previous
6.3.2 Unquoted Strings

In the summary section, some values are shown as quoted strings and some unquoted. The actual rule is that a
consisting of only the following characters does not have to be quoted:

a-z A-Z 0-9 _ - : . [] < > ;

These are also the legal characters for process variable names. Thus in many cases quotes are not needed.

6.3.3 Quoted Strings

A quoted string can contain any ascii character except the quote character ". The quote character itself can given
\ as an escape. For example "\"" is a quoted string containing the single character ".

6.3.4 Macro Substitution

Macro substitutions are permitted inside quoted strings. The macro has the form:

$(name)
or
${name}

6.3.5 Escape Sequences

Except for \" the database routines never translate standard C escape sequences, however,dbTranslateEscape can
be used to translate the standard C escape sequences:

\a \b \f \n \r \t \v \\ \? \’ \" \000 \xhh

(\000 represenst an octal number of 1, 2, or 3 digits. \xhh represents a hexadecimal number of 1 or 2 digits) A typ
is device support which expects escape sequences in the parm field:

The routine is:

int dbTranslateEscape(char *s,const char *ct);
/*
 * copies ct to s while substituting escape sequences
 * returns the length of the resultant string
 * The result may contain 0 characters
*/

6.3.6 Define before referencing

No item can be referenced until it is defined. For example arecordtype menu field can not reference a menu unle
that menu definition has already been defined. Another example is that a record instance can not appear u
associated record type has been defined.

6.3.7 Multiple Definitions

If a particular menu, recordtype, device, driver, or breakpoint table is defined more than once, then only the first in
is used. Record instance definitions are cumulative, i.e. each time a new field value is encountered it replaces the
value.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 59

Chapter 6: Database Definition
General Rules for Database Definition

colons

is
y

e

line are
6.3.8 filename extension

By convention:

• Record instances files have the extension ".db"

• Database definition files have the extension ".dbd ".

6.3.9 path addpath

The path follows the standard Unix convention, i.e. it is a list of directory names separated by colons (Unix) or semi
(winXX).

Format:

path "dir:dir...:dir"
addpath "dir:dir...:dir

NOTE: In winXX the separator is ; instead of :

Thepath command specifies the current path. Theaddpath appends directory names to the current path. The path
used to locate the initial database file and included files. An emptydir at the beginning, middle, or end of a non-empt
path string means the current directory. For example:

 nnn::mmm # Current directory is between nnn and mmm
 :nnn # Current directory is first
 nnn: # Current directory is last

Utilities which load database files (dbExpand , dbLoadDatabase , etc.) allow the user to specify an initial path. Th
path andaddpath commands can be used to change or extend the initial path.

The initial path is determined as follows:

If an initial path is specified, it is used. Else:
If the environment variableEPICS_DB_INCLUDE_PATH is defined, it is used. Else:
the default path is ".", i.e. the current directory.

The path is used unless the filename contains a / or \. The first directory containing the specified file is used.

6.3.10 include

Format:

include "filename"

An include statement can appear at any place shown in the summary. It uses the path as specified above.

6.3.11 comment

The comment symbol is "#". Whenever the comment symbol appears, it and all characters through the end of the
ignored.
60 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Menu

, only
6.3.12 dbTranslateEscape

6.3.13 dbTranslateEscape

6.4 Menu
Format:

menu(name) {
choice(choice_name,"choice_value")
...

}

Where:

name - Name for menu. This is the unique name identifying the menu. If duplicate definitions are specified
the first is used.
choice_name - The name placed in theenum generated bydbToMenuH or dbToRecordtypeH
choice_value - The value associated with the choice.

Example:

menu(menuYesNo) {
choice(menuYesNoNO,"NO")
choice(menuYesNoYES,"YES")

}

6.5 Record Type

6.5.1 Format:
recordtype(record_type) {

field(field_name,field_type) {
asl(asl_level)
initial("init_value")
promptgroup(gui_group)
prompt("prompt_value")
special(special_value)
pp(pp_value)
interest(interest_level)
base(base_type)
size(size_value)
extra("extra_info")
menu("name")

}

EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 61

Chapter 6: Database Definition
Record Type

ues

is is

ups of

d.

e field
of four
ients if
...
}

6.5.2 rules
• asl - Access Security Level. The default isASL1. Access Security is discussed in a later chapter. Only two val

are permitted for this field (ASL0 andASL1). Fields which operators normally change are assignedASL0. Other
fields are assignedASL1. For example, theVAL field of an analog output record is assignedASL0 and all other
fieldsASL1. This is because only theVAL field should be modified during normal operations.

• initial - Initial Value.

• promptgroup - Prompt group to which field belongs. This is for use by Database Configuration Tools. Th
defined only for fields that can be given values by database configuration tools. Fileguigroup .h contains all
possible definitions. The different groups allow database configuration tools to present the user with gro
fields rather than all prompt fields. I don’t know of any tool that currently uses groups.

• prompt - A prompt string for database configuration tools. Optional ifpromptgroup is not defined.

• special - If specified, then special processing is required for this field at run time.

• pp - Should a passive record be processed when Channel Access writes to this field? The default isNO.

• interest - Only used by thedbpr shell command.

• base - For integer fields, a base ofDECIMAL or HEX can be specified. The default isDECIMAL.

• size - Must be specified forDBF_STRING fields.

• extra - Must be specified forDBF_NOACCESS fields.

• menu - Must be specified forDBF_MENU fields. It is the name of the associated menu.

6.5.3 definitions
• record_type - The unique name of the record type. If duplicates are specified, only the first definition is use

• field_name- The field name. Only alphanumeric characters are allowed. When include files are generated, th
name is converted to lower case. Previous versions of EPICS required that field name be a maximum
characters. Although this restriction no longer exists, problems may arrise with some Channel Access cl
longer field names are chosen.

• field_type - This must be one of the following values:

• DBF_STRING

• DBF_CHAR

• DBF_UCHAR

• DBF_SHORT

• DBF_USHORT

• DBF_LONG

• DBF_ULONG

• DBF_FLOAT

• DBF_DOUBLE

• DBF_ENUM

• DBF_MENU

• DBF_DEVICE

• DBF_INLINK

• DBF_OUTLINK

• DBF_FWDLINK

• DBF_NOACCESS
62 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Record Type

t for
en used

he field
should

pport

ds.
• asl_level - This must be one of the following values:

• ASL0

• ASL1 (default value)

• init_value - A legal value for data type.

• prompt_value - A prompt value for database configuration tools.

• gui_group - This must be one of the following:

• GUI_COMMON

• GUI_ALARMS

• GUI_BITS1

• GUI_BITS2

• GUI_CALC

• GUI_CLOCK

• GUI_COMPRESS

• GUI_CONVERT

• GUI_DISPLAY

• GUI_HIST

• GUI_INPUTS

• GUI_LINKS

• GUI_MBB

• GUI_MOTOR

• GUI_OUTPUT

• GUI_PID

• GUI_PULSE

• GUI_SELECT

• GUI_SEQ1

• GUI_SEQ2

• GUI_SEQ3

• GUI_SUB

• GUI_TIMER

• GUI_WAVE

• GUI_SCAN
NOTE: GUI types were invented with the intention of allowing database configuration tools to promp
groups of fields and when a user selects a group the fields within the group. This feature has never be
and a result is that many record types have not assigned the correct GUI groups to each field.

• special_value must be one of the following:

• An integer value greater than 103. In this case, the record support special routine is called whenever t
is modified by database access. This feature is present only for compatibility. New support modules
useSPC_MOD.

The following value disallows access to field.

• SPC_NOMOD- This means that field can not be modified at runtime except by the record/device su
modules for the record type.

The following values are used for database common. They must NOT be used for record specific fiel

• SPC_SCAN - Scan related field.

• SPC_ALARMACK - Alarm acknowledgment field.

• SPC_AS - Access security field.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 63

Chapter 6: Database Definition
Record Type

r

access
New

ified

values

nd
The following value is used if record support wants to trapdbNameToAddr calls.

• SPC_DBADDR- This is set if the record supportcvt_dbaddr routine should be called wheneve
dbNameToAddr is called, i.e. when code outside record/device support want to access the field.

The following values all result in the record support special routine being called whenever database
modifies the field. The only reason for multiple values is that originally it seemed like a good idea.
support modules should only useSPC_MOD.

• SPC_MOD- Notify when modified, i.e. call the record support special routine whenever the field is mod
by database access.

• SPC_RESET - a reset field is being modified.

• SPC_LINCONV - A linear conversion field is being modified.

• SPC_CALC - A calc field is being modified.

• pp_value - Should a passive record be processed when Channel Access writes to this field? The allowed
are:

• NO (default)

• YES

• interest_level - An interest level for thedbpr command.

• base - For integer type fields, the default base. The legal values are:

• DECIMAL (Default)

• HEX

• size_value - The number of characters for aDBF_STRING field.

• extra_info - For DBF_NOACCESSfields, this is the C language definition for the field. The definition must e
with the fieldname in lower case.

6.5.4 Example

The following is the definition of the binary input record.

recordtype(bi) {
include "dbCommon.dbd"
field(INP,DBF_INLINK) {

prompt("Input Specification")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(VAL,DBF_ENUM) {

prompt("Current Value")
asl(ASL0)
pp(TRUE)

}
field(ZSV,DBF_MENU) {

prompt("Zero Error Severity")
promptgroup(GUI_ALARMS)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(OSV,DBF_MENU) {
64 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Record Type
prompt("One Error Severity")
promptgroup(GUI_BITS1)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(COSV,DBF_MENU) {

prompt("Change of State Svr")
promptgroup(GUI_BITS2)
pp(TRUE)
interest(1)
menu(menuAlarmSevr)

}
field(ZNAM,DBF_STRING) {

prompt("Zero Name")
promptgroup(GUI_CALC)
pp(TRUE)
interest(1)
size(20)

}
field(ONAM,DBF_STRING) {

prompt("One Name")
promptgroup(GUI_CLOCK)
pp(TRUE)
interest(1)
size(20)

}
field(RVAL,DBF_ULONG) {

prompt("Raw Value")
pp(TRUE)

}
field(ORAW,DBF_ULONG) {

prompt("prev Raw Value")
special(SPC_NOMOD)
interest(3)

}
field(MASK,DBF_ULONG) {

prompt("Hardware Mask")
special(SPC_NOMOD)
interest(1)

}
field(LALM,DBF_USHORT) {

prompt("Last Value Alarmed")
special(SPC_NOMOD)
interest(3)

}
field(MLST,DBF_USHORT) {

prompt("Last Value Monitored")
special(SPC_NOMOD)
interest(3)

}
field(SIOL,DBF_INLINK) {

prompt("Sim Input Specifctn")
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 65

Chapter 6: Database Definition
Device
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(SVAL,DBF_USHORT) {

prompt("Simulation Value")
}
field(SIML,DBF_INLINK) {

prompt("Sim Mode Location")
promptgroup(GUI_INPUTS)
special(SPC_NOMOD)
interest(1)

}
field(SIMM,DBF_MENU) {

prompt("Simulation Mode")
interest(1)
menu(menuYesNo)

}
field(SIMS,DBF_MENU) {

prompt("Sim mode Alarm Svrty")
promptgroup(GUI_INPUTS)
interest(2)
menu(menuAlarmSevr)

}
}

6.6 Device

6.6.1 Format:
device(record_type,link_type,dset_name,”choice_string”)

...

6.6.2 definitions
• record_type - Record type. The combination ofrecord_type and choice_string must be unique. If the

same combination appears multiple times, the first definition is used.

• link_type - Link type. This must be one of the following:

• CONSTANT

• PV_LINK

• VME_IO

• CAMAC_IO

• AB_IO

• GPIB_IO

• BITBUS_IO

• INST_IO

• BBGPIB_IO
66 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Driver

for a

sed.
• RF_IO

• VXI_IO

• dset_name - The exact name of the device support entry table without the trailing "DSET". Duplicates are not
allowed.

• choice_string Choice string for database configuration tools. Note that it must be enclosed in "". Note that
given record type, eachchoice_string must be unique.

6.6.3 Examples
device(ai,CONSTANT,devAiSoft,"Soft Channel")
device(ai,VME_IO,devAiXy566Se,"XYCOM-566 SE Scanned")

6.7 Driver

6.7.1 Format:
driver(drvet_name)

6.7.2 Definitions
• drvet_name- If duplicates are defined, only the first is used.

6.7.3 Examples
driver(drvVxi)
driver(drvXy210)

6.8 Breakpoint Table

6.8.1 Format:
breaktable(name) {

raw_value, eng_value,
...

}

6.8.2 Definitions
• name - Name, which must be alpha-numeric, of the breakpoint table. If duplicates are specified the first is u

• raw_value - The raw value, i.e. the actual ADC value associated with the beginning of the interval.

• eng_value - The engineering value associated with the beginning of the interval.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 67

Chapter 6: Database Definition
Record Instance

ned to

ans the

d

6.8.3 Example
breaktable(typeJdegC) {
 0.000000 0.000000
 365.023224 67.000000
 1000.046448 178.000000
 3007.255859 524.000000
 3543.383789 613.000000
 4042.988281 692.000000
 4101.488281 701.000000
}

6.9 Record Instance

6.9.1 Format:
record(record_type,record_name) {

field(field_name,"value")
...

}

6.9.2 definitions
• record_type - The record type.

• record_name- The record name. This must be composed of the following characters:
 a-z A-Z 0-9 _ - : [] < > ;
 NOTE: If macro substitutions are used the name must be quoted.
If duplicate definitions are given for the same record, then the last value given for each field is the value assig
the field.

• field_name- The field name

• value - Depends on field type.

• DBF_STRING
Any ASCII string. If it exceeds the field length, it will be truncated.

• DBF_CHAR, DBF_UCHAR, DBF_SHORT, DBF_USHORT, DBF_LONG, DBF_ULONG
A string that represents a valid integer. The standard C conventions are applied, i.e. a leading 0 me
value is given in octal and a leading 0x means that value is given in hex.

• DBF_FLOAT, DBF_DOUBLE
The string must represent a valid floating point number.

• DBF_MENU
The string must be one of the valid choices for the associated menu.

• DBF_DEVICE
The string must be one of the valid device choice strings.

• DBF_INLINK , DBF_OUTLINK
NOTES:

• In the field is INP or OUT then it is associated with field DTYP. Other DBF_INLINK an
DBF_OUTLINK fields can be either CONSTANT or PV_LINKs

• DTYP must be defined before the associated INP or OUT field.
68 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Record Instance

the
• Choosing the DTYP implicitly chooses a bus type.
• A DTYP of CONSTANT can be either a constant or a PV_LINK.

The allowed value depends on the bus type as follows:
• CONSTANT

A constant valid for the field associated
• PV_LINK

A value of the form:

 record.field process maximize

field, process , andmaximize are optional.
The default value forfield is VAL.
process can have one of the following values:

• NPP - No Process Passive (Default)
• PP - Process Passive
• CA - Force link to be a channel access link
• CP - CA and process on monitor
• CPP - CA and process on monitor if record is passive

NOTES:
CP and CPP are valid only for INLINKs.
FWD_LINKs can be PP or CA. If a FWD_LINK is a channel access link it must reference
PROC field.

maximize can have one of the following values
• NMS - No Maximize Severity (Default)
• MS - Maximize severity

• VME_IO
#Ccard Ssignal @parm
where:
card - the card number of associated hardware module.
signal - signal on card
parm - An arbitrary character string of up to 31 characters.
 This field is optional and is device specific.

• CAMAC_IO
#Bbranch Ccrate Nstation Asubaddress Ffunction @parm
branch , crate , station , subaddress , and function should be obvious tocamac users.
Subaddress and function are optional (0 if not given).Parm is also optional and is device
dependent (25 characters max).

• AB_IO
#Llink Aadapter Ccard Ssignal @parm
link - Scanner., i.e. vme scanner number
adapter - Adapter. Allen Bradley also calls this rack
card - Card within Allen Bradley Chassis
signal - signal on card
parm - An optional character string that is device dependent(27 char max)

• GPIB_IO
#Llink Aaddr @parm
link - gpib link, i.e. interface
addr - GPIB address
parm - device dependent character string (31 char max)

• BITBUS_IO
#Llink Nnode Pport Ssignal @parm
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 69

Chapter 6: Database Definition
Record Instance
link - link, i.e. vme bitbus interface.
node - bitbus node
port - port on the node
signal - signal on port
parm - device specific character string(31 char max)

• INST_IO
@parm
parm - Device dependent character string(35 char max)

• BBGPIB_IO
#Llink Bbbaddr Ggpibaddr @parm
link - link, i.e. vme bitbus interface.
bbadddr - bitbus address
gpibaddr - gpib address
parm - optional device dependent character string(31 char max)

• RF_IO
#Rcryo Mmicro Ddataset Eelemen t

• VXI_IO
#Vframe Cslot Ssignal @parm (Dynamic addressing)
 or
#Vla Signal @parm (Static Addressing)
frame - VXI frame number
slot - Slot within VXI frame
la - Logical Address
signal - Signal Number
parm - device specific character string(25 char max)

• DBF_FWDLINK
This is either not defined or else is aPV_LINK. See above for definitions.

6.9.3 Examples
record(ai,STS_AbAiMaS0) {

field(SCAN,".1 second")
field(DTYP,"AB-1771IFE-4to20MA")
field(INP,"#L0 A2 C0 S0 F0 @")
field(PREC,"4")
field(LINR,"LINEAR")
field(EGUF,"20")
field(EGUL,"4")
field(EGU,"MilliAmps")
field(HOPR,"20")
field(LOPR,"4")

}
record(ao,STS_AbAoMaC1S0) {

field(DTYP,"AB-1771OFE")
field(OUT,"#L0 A2 C1 S0 F0 @")
field(LINR,"LINEAR")
field(EGUF,"20")
field(EGUL,"4")
field(EGU,"MilliAmp")
field(DRVH,"20")
field(DRVL,"4")
field(HOPR,"20")
70 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Record Attribute

database
stance of
TYP is
Record

ted

on. The
support

that the
t

field(LOPR,"4")
}
record(bi,STS_AbDiA0C0S0) {

field(SCAN,"I/O Intr")
field(DTYP,"AB-Binary Input")
field(INP,"#L0 A0 C0 S0 F0 @")
field(ZNAM,"Off")
field(ONAM,"On")

}

6.10 Record Attribute
Each record type can have a set of record attributes. Each attribute is a “psuedo” field that can be accessed via
and channel access. An attribute is given a name the acts like a field name which has the same value for every in
the record type. Two attributes are generated automatically for each record type: RTYP and VERS. The value for R
the record type name. The default value for VERS is "none specified", which can be changed by record support.
support can call the following routine to create new attributes or change existing attributes:

long dbPutAttribute(char *recordTypename,
 char *name,char*value)

The arguments are:

recordTypename - The name of recordtype.
name - The attribute name, i.e. the psuedo field name.
value - The value assigned to the attribute.

6.11 Breakpoint Tables - Discussion
The menumenuConvert is used for fieldLINR of theai andao records. These records allow raw data to be conver
to/from engineering units via one of the following:

1. No Conversion.

2. Linear Conversion.

3. Breakpoint table.

Other record types can also use this feature. The first two choices specify no conversion and linear conversi
remaining choices are assumed to be the names of breakpoint tables. If a breakpoint table is chosen, the record
modules callscvtRawToEngBpt or cvtEngToRawBpt . You can look at theai andao record support modules for
details.

If a user wants to add additional breakpoint tables, then the following should be done:

• Copy themenuConvert .dbd file from EPICSbase /src/bpt

• Add definitions for new breakpoint tables to the end

• Make sure modifiedmenuConvert .dbd is loaded into the IOC instead of EPICS version.

It is only necessary to load a breakpoint file if a record instance actually chooses it. It should also be mentioned
Allen Bradley IXE device support misuses theLINR field. If you use this module, it is very important that you do no
change any of the EPICS supplied definitions inmenuConvert .dbd . Just add your definitions at the end.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 71

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

akpoint
ocouple

ineering

nsion of

nt table

the
itions,

pe.
If a breakpoint table is chosen, then the corresponding breakpoint file must be loaded into the IOC beforeiocInit is
called.

Normally, it is desirable to directly create the breakpoint tables. However, sometimes it is desirable to create a bre
table from a table of raw values representing equally spaced engineering units. A good example is the Therm
tables in the OMEGA Engineering, INC Temperature Measurement Handbook. A toolmakeBpt is provided to convert
such data to a breakpoint table.

The format for generating a breakpoint table from a data table of raw values corresponding to equally spaced eng
values is:

!comment line
<header line>
<data table>

The header line contains the following information:

• Name: An alphanumeric ascii string specifying the breakpoint table name

• Low Value Eng: Engineering Units Value for first breakpoint table entry

• Low Value Raw: Raw value for first breakpoint table entry

• High Value Eng: Engineering Units: Highest Value desired

• High Value Raw: Raw Value for High Value Eng

• Error : Allowed error (Engineering Units)

• First Table: Engineering units corresponding to first data table entry

• Last Table: Engineering units corresponding to last data table entry

• Delta Table: Change in engineering units per data table entry

 An example definition is:

”TypeKdegF” 32 0 1832 4095 1.0 -454 2500 1
<data table>

The breakpoint table can be generated by executing

makeBpt bptXXX.data

The input file must have the extension of data. The output filename is the same as the input filename with the exte
dbd.

Another way to create the breakpoint table is to include the following definition in a Makefile.Vx:

BPTS += bptXXX.dbd

NOTE: This requires the naming convention that all data tables are of the form bpt<name>.data and a breakpoi
bpt<name>.dbd.

6.12 Menu and Record Type Include File Generation.

6.12.1 Introduction

Given a file containing menus,dbToMenuH generates an include file that can be used by any code which uses
associated menus. Given a file containing any combination of menu definitions and record type defin
dbToRecordtypeH generates an include file that can be used by any code which uses the menus and record ty
72 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
Menu and Record Type Include File Generation.

l record

sion of

at are

type,

their
EPICS base uses the following conventions for managing menu and recordtype definitions. Users generating loca
types are encouraged to do likewise.

• Each menu that is either for fields in database common (for examplemenuScan) or is of global use (for example
menuYesNo) is defined in a separate file. The name of the file is the same as the menu name with an exten
dbd . The name of the generated include file is the menu name with an extension ofh. ThusmenuScan is defined
in a filemenuScan.dbd and the generated include file is namedmenuScan.h

• Each record type definition is defined in a separate file. In addition, this file contains any menu definitions th
used only by that record type. The name of the file is the same as the recordtype name followed byRecord .dbd .
The name of the generated include file is the same name with an extension ofh. ThusaoRecord is defined in a
file aoRecord .dbd and the generated include file is namedaoRecord .h. SinceaoRecord has a private menu
calledaoOIF , thedbd file and the generated include file have definitions for this menu. Thus for each record
there are two source files (xxxRecord .dbd andxxxRecord .c) and one generated file (xxxRecord .h).

Before continuing, it should be mentioned that Application Developers don’t have to executedbToMenuH or
dbToRecordtypeH . If a developer uses the proper naming conventions, it is only necessary to add definitions to
Makefile . Consult the chapter on the EPICS Build Facility for details..

6.12.2 dbToMenuH

This tool is executed as follows:

dbToMenuH -Idir -Smacsub menuXXX.dbd

It generates a file which has the same name as the input file but with an extension ofh. Multiple -I options can be
specified for an include path and multiple-S options for macro substitution.

For examplemenuPriority .dbd , which contains the definitions for processing priority contains:

menu(menuPriority) {
choice(menuPriorityLOW,"LOW")
choice(menuPriorityMEDIUM,"MEDIUM")
choice(menuPriorityHIGH,"HIGH")

}

The include file,menuPriority .h, generated bydbToMenuH contains:

#ifndef INCmenuPriorityH
#define INCmenuPriorityH
typedef enum {

menuPriorityLOW,
menuPriorityMEDIUM,
menuPriorityHIGH,

}menuPriority;
#endif /*INCmenuPriorityH*/

Any code that needs to use the priority menu values should use these definitions.

6.12.3 dbToRecordtypeH

This tool is executed as follows:

dbTorecordtypeH -Idir -Smacsub xxxRecord.dbd

It generates a file which has the same name as the input file but with an extension ofh. Multiple -I options can be
specified for an include path and multiple-S options for macro substitution.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 73

Chapter 6: Database Definition
Menu and Record Type Include File Generation.
For exampleaoRecord .dbd , which contains the definitions for the analog output record contains:

menu(aoOIF) {
choice(aoOIF_Full,"Full")
choice(aoOIF_Incremental,"Incremental")

}
recordtype(ao) {

include "dbCommon.dbd"
field(VAL,DBF_DOUBLE) {

prompt("Desired Output")
asl(ASL0)
pp(TRUE)

}
field(OVAL,DBF_DOUBLE) {

prompt("Output Value")
}
... (Many more field definitions
}

}

The include file,aoRecord .h, generated bydbToRecordtypeH contains:

#include <vxWorks.h>
#include <semLib.h>
#include "ellLib.h"
#include "fast_lock.h"
#include "link.h"
#include "tsDefs.h"

#ifndef INCaoOIFH
#define INCaoOIFH
typedef enum {
 aoOIF_Full,
 aoOIF_Incremental,
}aoOIF;
#endif /*INCaoOIFH*/
#ifndef INCaoH
#define INCaoH
typedef struct aoRecord {
 char name[29]; /*Record Name*/
 ... Remaining fields in database common
 double val; /*Desired Output*/
 double oval; /*Output Value*/
 ... remaining record specific fields
} aoRecord;
#define aoRecordNAME 0
... defines for remaining fields in database common
#define aoRecordVAL 42
#define aoRecordOVAL 43
... defines for remaining record specific fields
#ifdef GEN_SIZE_OFFSET
int aoRecordSizeOffset(dbRecordType *pdbRecordType)
{
 aoRecord *prec = 0;
74 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
dbExpand

No other

ith the

fields

assed

C.
support
 pdbRecordType->papFldDes[0]->size=sizeof(prec->name);
 pdbRecordType->papFldDes[0]->offset=

(short)((char *)&prec->name - (char *)prec);
 ... code to compute size&offset for other fields in dbCommon
 pdbRecordType->papFldDes[42]->size=sizeof(prec->val);
 pdbRecordType->papFldDes[42]->offset=

(short)((char *)&prec->val - (char *)prec);
 pdbRecordType->papFldDes[43]->size=sizeof(prec->oval);
 pdbRecordType->papFldDes[43]->offset=

(short)((char *)&prec->oval - (char *)prec);
 ... code to compute size&offset for remaining fields
 pdbRecordType->rec_size = sizeof(*prec);
 return(0);
}
#endif /*GEN_SIZE_OFFSET*/

The analog output record support module and all associated device support modules should use this include file.
code should use it. Let’s discuss the various parts of the file.:

• Theenumgenerated from the menu definition should be used to reference the value of the field associated w
menu.

• The typedef andstructure defining the record are used by record support and device support to access
in an analog output record.

• A #define is present for each field within the record. This is useful for the record support routines that are p
a pointer to aDBADDR structure. They can have code like the following:

switch (dbGetFieldIndex(pdbAddr)) {
case aoRecordVAL :

...
 break;
case aoRecordXXX:

...
break;

default:
...

}

The C source routineaoRecordSizeOffset is automatically called when a record type file is loaded into an IO
Thus user code does not have to be aware of this routine except for the following convention: The associate record
module MUST include the statements:

#define GEN_SIZE_OFFSET
#include "xxxRecord.h"
#undef GEN_SIZE_OFFSET

This convention ensures that the routine is defined exactly once.

6.13 dbExpand
dbExpand -Idir -Smacsub file1 file2 ...
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 75

Chapter 6: Database Definition
dbLoadDatabase

e

d.

of this

of
Multiple -I options can be specified for an include path and multiple-S options for macro substitution. Note that th
environment variableEPICS_DB_INCLUDE_PATH can also be used in place of the-I options.

NOTE: This is supported only on the host.

This command reads the input files and then writes, tostdout , a file containing ASCII definitions for all information
described by the input files. The difference is that comment lines do not appear and all include files are expande

This routine is extremely useful if an IOC is not using NFS for thedbLoadDatabase commands. It takes more than 2
minutes to load thebase /rec /base .dbd file into an IOC if NFS is not used. IfdbExpand creates a localbase .dbd
file, it takes about 7 seconds to load (25 MHZ 68040 IOC).

6.14 dbLoadDatabase
dbLoadDatabase(char *db_file, char *path, char *substitutions)

NOTES:

• IOC Only

• Using a path on a vxWorks ioc does not work very well.

• Both path and substitutions can be null.

This command loads a database file containing any of the definitions given in the summary at the beginning
chapter.

dbfile must be a file containing onlyrecord instancesin standard ASCII format. Such files should have an extension
“.db”.

As each line of dbfile is read, the substitutions specified insubstitutions is performed. The substitutions
are specified as follows:

“var1=sub1,var2=sub3,...”

Variables are specified in the dbfile as $(variable_name). If the substitution string

"a=1,b=2,c=\"this is a test\""

were used, any variables$(a), $(b), $(c) would be substituted with the appropriate data.

6.14.1 EXAMPLE

For example, lettest .db be:

record(ai,"$(pre)testrec1")
record(ai,"$(pre)testrec2")
record(stringout,"$(pre)testrec3") {

field(VAL,"$(STR)")
field(SCAN,"$(SCAN)")

}

Then issuing the command:

dbLoadDatabase("test.db",0,"pre=TEST,STR=test,SCAN=Passive")

gives the same results as loading:

record(ai,"TESTtestrec1")
record(ai,"TESTtestrec2")
76 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
dbLoadRecords

me

which

ts are
record(stringout,"TESTtestrec3") {
field(VAL,"test")
field(SCAN,"Passive")

}

6.15 dbLoadRecords
dbLoadRecords(char* dbfile, char* substitutions)

NOTES:

• IOC Only.

• dbfile must contain only record instances.

• dbLoadRecords is no longer needed.It will probably go away in the future. At the present ti
dbLoadRecords loads faster than dbLoadDatabase.

6.16 dbLoadTemplate
dbLoadTemplate(char* template_def)

NOTES:

• IOC Only.

• MSI can be used to expand templates on the host.

dbLoadTemplate reads a template definition file. This file contains rules about loading database instance files,
contain$(xxx) macros, and performing substitutions.

template_def contains the rules for performing substitutions on the instance files. For convenience two forma
provided. The format is:

file name.db {
put Version-1 or Version-2 here

}

Version-1

{ set1var1=sub1, set1var2=sub2,...... }
{ set2var1=sub1, set2var2=sub2,...... }
{ set3var1=sub1, set3var2=sub2,...... }

- or -

Version-2

pattern{ var1,var2,var3,....... }
{ sub1_for_set1, sub2_for_set1, sub3_for_set1, ... }
{ sub1_for_set2, sub2_for_set2, sub3_for_set2, ... }
{ sub1_for_set3, sub2_for_set3, sub3_for_set3, ... }

The first line (filename.db) specifies the record instance input file.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 77

Chapter 6: Database Definition
dbReadTest

o it to
2, the
tion

erform:

s all the
Each set of definitions enclosed in {} is variable substitution for the input file. The input file has each set applied t
produce one composite file with all the completed substitutions in it. Version 1 should be obvious. In version
variables are listed in the “pattern {}” line, which must precede the braced substitution lines. The braced substitu
lines contains sets which match up with thepattern {} line.

6.16.1 EXAMPLE

Two simple template file examples are shown below. The examples specify the same substitutions to p
this =sub1 andthat =sub2 for a first set, andthis =sub3 andthat =sub4 for a second set.

file test.db {
{ this=sub1,that=sub2 }
{ this=sub3,that=sub4 }

}

file test.db {
pattern{this,that}
{sub1,sub2}
{sub3,sub4 }

Assume thattest .db is:

record(ai,"$(this)record") {
field(DESC,"this = $(this)")

}
record(ai,"$(that)record") {

field(DESC,"this = $(that)")
}

UsingdbLoadTemplate with either input is the same as defining the records:

record(ai,"sub1record") {
field(DESC,"this = sub1")

}
record(ai,"sub2record") {

field(DESC,"this = sub2")
}

record(ai,"sub3record") {
field(DESC,"this = sub3")

}
record(ai,"sub4record") {

field(DESC,"this = sub4")
}

6.17 dbReadTest
dbReadTest -Idir -Smacsub file.dbd ... file.db ...

This utility can be used to check for correct syntax in database definition and database instance files. It just read
specified files
78 EPICS IOC Application Developer’s Guide

Chapter 6: Database Definition
dbReadTest

les can
Multiple -I, and-S options can be specified. An arbitrary number of database definition and database instance fi
be specified.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 79

Chapter 6: Database Definition
dbReadTest
80 EPICS IOC Application Developer’s Guide

split
ple main

an be
is
an

e show.

file,
Chapter 7: IOC Initialization

7.1 Overview - Environments requiring a main program
If a main program is required (most likely on all environments except vxWorks and RTEMS), then initialization is
between statements in the main program and statements residing in startup scripts passed to ioccrf. An exam
program is:

int main(int argc,char *argv[])
{
 ioccrfRegisterCommon();
 registerRecordDeviceDriverRegister();
 if(argc>=2) {
 ioccrf(argv[1]);
 threadSleep(.2);
 }
 ioccrf(NULL);
 return(0);
}

ioccrfrRegisterCommon registers the commands described in the chapter on IOC test facilities so that they c
called by ioccrf. registerRecordDeviceDriverRegister registers the record/device/driver support that
linked together with the main program. The first call toioccrf executes the commands from the filename passed as
argument to the program containing main. The second call toioccrf putsioccrf into interactive mode. This allows
the user to issue the commands described in chapter "IOC Test Facilities” as well as some built in commands lik

The file passed as the argument to the command contains statements like:

dbLoadDatabase("../../dbd/<appname>App.dbd",0,0)
registerRecordDeviceDriver(pdbbase)
dbLoadRecords("../../db/<file>.db")
iocInit()

7.2 Overview - vxWorks
After vxWorks is loaded at IOC boot time, commands like the following, normally in the vxWorks startup command
are issued to load and initialize the control system software:

For many board support packages the following must be added
#cd <full path to target bin directory>
< cdCommands
#The following sets timezone properly on vxWorks
#YOU MUST enter correct values for
name,minutesWest,start daylight,end daylight
#putenv("TIMEZONE=<name>::<minutesWest>:<start daylight>:<end daylight>")
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 81

Chapter 7: IOC Initialization
Overview - RTEMS

mple

pecific

by the

ny cases
s cd, ld,
dbd files
ins.
#For example
#putenv("TIMEZONE=US/Central::360:040102:100102")

cd topbin
ld < <appname>Library.munch
threadInit()
cd top
dbLoadDatabase(”dbd/<appname>App.dbd”)
registerRecordDeviceDriver(pdbbase)
dbLoadRecords("db/<file>.db")

. . .
iocInit()

cdCommands defines vxWorks global variables that allow vxWorks cd commands for convient locations. For exa
in one of my test areas the followingcdCommands file appears:

startup = "/home/phoebus6/MRK/epics/example/R3-14/iocBoot/iocexample"
appbin = "/home/phoebus6/MRK/epics/example/R3-14//bin/vxWorks-68040"
top = "/home/phoebus6/MRK/epics/example/R3-14"
topbin = "/home/phoebus6/MRK/epics/example/R3-14/bin/vxWorks-68040"

NOTE: This file is automatically generated via make rules.

The ld command loads the core EPICS softwar, record/device,/driver support, and any other application s
modules.

ThedbLoadDatabase command loads database definition files describing the record/device/driver support used
application..

ThedbLoadRecords commands load record instance definitions.

iocInit initializes the various epics components.

7.3 Overview - RTEMS
RTEMS applications read commands from a startup script in <tftpbase>/epics/<target_hostname>/st.cmd. In ma
this script can be the same as the one used with vxWorks. The RTEMS shell does not provide commands such a
or assignment to variables (e.g. startup, appbin, etc.) but this does not present a major problem since the db and
have been copied to standard locations and the entire application has been statically linked before execution beg

7.4 iocInit
iocInit performs the following functions:

7.4.1 coreRelease

Prints a messages showing which version of iocCore is being loaded.
82 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Initialization
iocInit

if any of

y.

is the

is the
7.4.2 taskwdInit

start the task watchdog task. This task accepts requests to watch other tasks. It runs periodically and checks to see
the tasks is suspended. If so it issues an error message. It can also optionally invoke a callback routine

7.4.3 callbackInit

Start the general purpose callback tasks. Three tasks are started with the only difference being scheduling priorit

7.4.4 dbCaLinkInit

CallsdbCaLinkInit . The initializes the task that handles database channel access links.

7.4.5 initDrvSup

InitDrvSup locates each device driver entry table and calls the init routine of each driver.

7.4.6 initRecSup

InitRecSup locates each record support entry table and calls the init routine.

7.4.7 initDevSup

InitDevSup locates each device support entry table and calls the init routine with an argument specifying that this
initial call.

7.4.8 initDatabase

InitDatabase makes three passes over the database performing the following functions:

• Pass 1: Initializes following fields:rset , dset , mlis . Calls record supportinit_record (First pass)

• Pass 2: Convert eachPV_LINK to DB_LINK or CA_LINK

• Pass 3: Calls record supportinit_record (second pass)

After the database is initializeddbLockInitRecords is called. It creates the lock sets.

7.4.9 finishDevSup

InitDevSup locates each device support entry table and calls the init routine with an argument specifying that this
finish call.

7.4.10 scanInit

The periodic, event, and io event scanners are initialized and started.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 83

Chapter 7: IOC Initialization
Changing iocCore fixed limits

and

ould be

e size for
sary to

sh entries

ger hash

efault is
hen the
7.4.11 interruptAccept

A global variable ”interruptAccept ” is setTRUE. Until this time no request should be made to process records
all interrupts should be ignored.

7.4.12 initialProcess

dbProcess is called for all records that havePINI TRUE .

7.4.13 rsrv_init

The Channel Access servers are started

7.5 Changing iocCore fixed limits
The following commands can be issued after iocCore is loaded to change iocCore fixed limits. The commands sh
given before any dbLoad commands.

callbackSetQueueSize(size)
dbPvdTableSize(size)
scanOnceSetQueueSize(size)
errlogInit(buffersize)

NOTE: If a main program is required, these routines should be called immediately after threadInit.

7.5.1 callbackSetQueueSize

Requests for the general putpose callback tasks are placed in a ring buffer. This command can be used to set th
the ring buffers. The default is 2000. A message is issued when a ring buffer overflows. It should rarely be neces
override this default. Normally the ring buffer overflow messages appear when a callback task fails.

7.5.2 dbPvdTableSize

Record instance names are stored in a process variable directory, which is a hash table. The default number of ha
is 512.dbPvdTableSize can be called to change the size. It must be called before anydbLoad commands and must
be a power of 2 between 256 and 65536. If an IOC contains very large databases (several thousand) then a lar
table size speeds up searches for records.

7.5.3 scanOnceSetQueueSize

scanOnce requests are placed in a ring buffer. This command can be used to set the size for the ring buffer. The d
1000. t should rarely be necessary to override this default. Normally the ring buffer overflow messages appear w
scanOnce task fails.
84 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Initialization
TSconfigure

fault is to
ment is

ftware

e set

used

. If no

ESY).

The
7.5.4 errlogInit

Thus overrides the default buffer size for the errlog message queue. The default is1280 bytes.

7.6 TSconfigure
NOTE: This is only supported on vxWorks.

EPICS supports several methods for an IOC to obtain time so that accurate time stamps can be generated. The de
obtain NTP time stamps from another computer. The following can be used to change the defaults. If ant argu
given the value 0 then the default is applied.

TSConfigure(master,sync_rate,clock_rate,master_port,slave_port)

• master: 1=master timing IOC, 0=slave timing, default is slave.

• sync_rate: The clock sync rate in seconds. This rate tells how often the synchronous time stamp support so
will confirm that an IOC clock is synchronized. The default is 10 seconds.

• clock_rate: The frequency in hertz of the clock, the default is 1000Hz for the event system. The value will b
to the IOC’s internal clock rate when soft timing is used.

• master_port: UDP port for master. The default is 18233

• slave_port: UDP port for slave.

• time_out: UDP information request time out in milliseconds, if zero is entered here, the default will be
which is 250ms.

• type: 0=normal operation, 1=force soft timing type

See "Synchronous Time Stamp Support", by Jim Kowalkowski for details. Note that the default is to be a slave
master is found the slave will obtain a starting time from Unix.

7.7 initHooks
NOTE: starting with release 3.13.0beta12 initHooks was changed drastically (thanks to Benjamin Franksen at B
Old initHooks.c functions will still work but users are encouraged to switch to the new method.

The inithooks facility allows application specific functions to be called at various states during ioc initialization.
states are defined in initHooks.h, which contains the following definitions:

typedef enum {
 initHookAtBeginning,
 initHookAfterCallbackInit,
 initHookAfterCaLinkInit,
 initHookAfterInitDrvSup,
 initHookAfterInitRecSup,
 initHookAfterInitDevSup,
 initHookAfterInitDatabase,
 initHookAfterFinishDevSup,
 initHookAfterScanInit,
 initHookAfterInterruptAccept,
 initHookAfterInitialProcess,
 initHookAtEnd
}initHookState;
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 85

Chapter 7: IOC Initialization
Environment Variables

at state.
typedef void (*initHookFunction)(initHookState state);
int initHookRegister(initHookFunction func);

Any new functions that are registered before iocInit reaches the desired state will be called when iocInit reaches th
The following is skeleton code to use the facility:

static initHookFunction myHookFunction;

int myHookInit(void)
{
 return(initHookRegister(myHookFunction));
}

static void myHookFunction(initHookState state)
{
 switch(state) {
 case initHookAfterInitRecSup:
 ...
 break;
 case initHookAfterInterruptAccept:
 ...
 break;
 default:
 break;
 }
}

An arbitrary number of functions can be registered.

7.8 Environment Variables
The following environment variables are used by iocCore:

EPICS_CA_ADDR_LIST
EPICS_CA_CONN_TMO
EPICS_CA_BEACON_PERIOD
EPICS_CA_AUTO_ADDR_LIST
EPICS_CA_REPEATER_PORT
EPICS_CA_SERVER_PORT
EPICS_TS_NTP_INET
EPICS_IOC_LOG_PORT
EPICS_IOC_LOG_INET

On vxWorks these variables can be overridden via the putenv function. For example:

 putenv("EPICS_CA_CONN_TMO=10")

Any putenv commands should be issued after iocCore is loaded and before any dbLoad commands.
86 EPICS IOC Application Developer’s Guide

Chapter 7: IOC Initialization
Initialize Logging

ing
7.9 Initialize Logging
Initialize the logging system. See chapter "IOC Error Logging" for details. For initiliization just realise that the follow
can be used if you want to use a private host log file.

putenv("EPICS_IOC_LOG_PORT=<port>")
putenv("EPICS_IOC_LOG_INET=<inet addr>")

These command must be given immediately after iocCore is loaded.

If you want to disable logging to the system wide log file just give the command.

iocLogDisable = 1

This must be given after iocCore is loaded and before any dbLoad commands.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 87

Chapter 7: IOC Initialization
Initialize Logging
88 EPICS IOC Application Developer’s Guide

following

group

.

ioc is
Chapter 8: Access Security

8.1 Overview
This chapter describes access security. i.e. the system that limits access to IOC databases. It consists of the
sections:

1. Overview - This section

2. Quick start - A summary of the steps necessary to start access security.

3. User’s Guide - This explains what access security is and how to use it.

4. Design Summary - Functional Requirements and Design Overview.

5. Application Programmer’s Interface

6. Database Access Security - Access Security features for EPICS IOC databases.

7. Channel Access Security - Access Security features in Channel Access

8. Implementation Overview

The requirements for access security were generated at ANL/APS in 1992. The requirements document is:

EPICS: Channel Access Security - Functional Requirements, Ned D. Arnold, 03/-9/92.

This document is available via the EPICS WWW documentation

8.2 Quick Start
In order to “turn on” access security for a particular IOC the following must be done:

• Create the access security file.

• IOC databases may have to be modified

• Record instances may have to have values assigned to field ASG. If ASG is null the record is in
DEFAULT.

• Access security files can be reloaded after iocInit via a subroutine record withasSubInit and
asSubProcess as the associated subroutines. Writing the value 1 to this record will cause a reload

• The vxWorks startup file must contain the following command before iocInit.
asSetFilename(“accessSecurityFile”)

The following is an optional command.
asSetSubstitutions(“var1=sub1,var2=sub2,...”))

The following rules decide if access security is turned on for an IOC:

• If asSetFilename is not executed before iocInit, access security will NEVER be started..

• If asSetFile is given and any error occurs while first initializing access security, then ALL access to that
denied.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 89

Chapter 8: Access Security
User’s Guide

revious

d on the

hus no

Group
ity level
ecord

the local
al

ss to the

d access
xtension
• If after successfully starting access security, an attempt is made to restart and an error occurs then the p
access security configuration is maintained.

8.3 User’s Guide

8.3.1 Features

Access security protects IOC databases from unauthorized Channel Access Clients. Access security is base
following:

• Who: Userid of the channel access client.

• Where: Hostid where the user is logged on. This is the host on which the channel access client exists. T
attempt is made to see if a user is local or is remotely logged on to the host.

• What: Individual fields of records are protected. Each record has a field containing the Access Security
(ASG) to which the record belongs. Each field has an access security level, which must be 0 or 1.The secur
is defined in the ascii record definition file. Thus the access security level for a field is the same for all r
instances of a record type.

• When: Access rules can contain input links and calculations similar to the calculation record.

8.3.2 Limitations

An IOC database can be accessed only via Channel Access or via the vxWorks shell. It is assumed that access to
IOC console is protected via physical security andtelnet /rlogin access protected via normal Unix and physic
security.

No attempt has been made to protect against the sophisticated saboteur. Unix security must be used to limit acce
subnet on which the iocs reside.

8.3.3 Definitions

This document uses the following terms:

• ASL: Access Security Level (Called access level in Req Doc)

• ASG: Access Security Group (Called PV Group in Req Doc)

• UAG: User Access Group

• HAG : Host Access Group

8.3.4 Access Security Configuration File

This section describes the format of a file containing definitions of the user access groups, host access groups, an
security groups. An IOC creates an access configuration database by reading an access configuration file (the e
.acf is recommended). Lets first give a simple example and then a complete description of the syntax.

8.3.4.1 Simple Example

UAG(uag) {user1,user2}
HAG(hag) {host1,host2}
90 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
User’s Guide

ultiple

pear in

r a

s

efined
ASG(DEFAULT) {
RULE(1,READ)
RULE(1,WRITE) {

UAG(uag)
HAG(hag)

}
}

These rules provide read access to anyone located anywhere and write access touser1 anduser2 if they are located at
host1 or host2 .

8.3.4.2 Syntax Definition

In the following description:

[]Lists optional elements
|Separator for alternatives
...Means that an arbitrary number of definitions may be given.
Any line beginning with # is a comment

UAG(<name>) [{ <user> [, <user> ...] }]
...
HAG(<name>) [{ <host> [, <host> ...] }]
...
ASG(<name>) [{

[INP<index>(<pvname>)
...]
RULE(<level>,NONE | READ | WRITE) {

[UAG(<name> [,<name> ...])]
[HAG(<name> [,<name> ...])]
CALC(”<calculation>”)

}
...

}]
...

8.3.4.3 Discussion

• UAG: User Access Group. This is a list of userids. The list may be empty. The same userid can appear in m
UAGs. For iocs the userid is taken from the user field of the boot parameters.

• HAG : Host Access Group. This is a list of host names. It may be empty. The same host name can ap
multiple HAGs. For iocs the host name is taken from the target name of the boot parameters.

• ASG: An access security group. The group ”DEFAULT” is a special case. If a member specifies a null group o
group which has no ASG definition then the member is assigned to the group ”DEFAULT”.

• INP<index> Index must have one of the values “A” to “ L”. These are just like theINP fields of a
calculation record. It is necessary to defineINP fields if aCALC field is defined in anyRULE for the ASG.

• RULE This defines access permissions. <level > must be 0 or 1. Permission for a level 1 field implie
permission for level 0 fields. The permissions areNONE, READ, andWRITE. WRITEpermission implies
READpermission. The standard EPICS record types have all fields set to level 1 except forVAL, CMD
(command), andRES (reset).

• UAG specifies a list of user access groups that can have the access privilege. If UAG is not d
then all users are allowed.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 91

Chapter 8: Access Security
User’s Guide

then

UE

d is

s are

s are

iated
t for

nd:

ot
s

tup file

e record
• HAG specifies a list of host access groups that have the access privilege. If HAG is not defined
all hosts are allowed.

• CALC is just like theCALCfield of a calculation record except that the result must evaluate to TR
or FALSE. If the calculation results in (0,1) meaning (FALSE,TRUE) then the rule (doesn’t apply,
does apply) . The actual test is .99 <result < 1.01.

Each IOC record contains a fieldASG, which specifies the name of the ASG to which the record belongs. If this fiel
null or specifies a group which is not defined in the access security file then the record is placed in group ”DEFAULT”.

The access privilege for a channel access client is determined as follows:

1. The ASG associated with the record is searched.

2. Each RULE is checked for the following:
a. The field’s level must be less than or equal to the level for this RULE.
b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined all user

accepted.
c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined all host

accepted.
d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fields assoc

with this calculation are in INVALID alarm severity the calculation is considered false. The actual tes
TRUE is .99 < result < 1.01.

3. The maximum access allowed by step 2 is the access chosen.

Multiple RULEs can be defined for a given ASG, even RULEs with identical levels and access permission.

8.3.5 ascheck - Check Syntax of Access Configuration File

After creating or modifying an access configuration file it can be checked for syntax errors by issuing the comma

ascheck -S “xxx=yyy,...” < "filename"

This is a Unix command. It displays errors onstdout . If no errors are detected it prints nothing. Only syntax errors n
logic errors are detected. Thus it is still possible to get your self in trouble. The flag-S means a set of macro substitution
may appear. This is just like the macro substitutions for dbLoadDatabase.

8.3.6 IOC Access Security Initialization

In order to have access security turned on during IOC initialization the following command must appear in the star
beforeiocInit is called:

asSetFilename("<access security file>")

If this command does not appear then access security will not be started byiocInit . If an error occurs when iocInit calls
asInit than all access to the ioc is disabled, i.e. no channel access client will be able to access the ioc.

Access security also supports macro substitution just likedbLoadDatabase . The following command specifies the
desired substitutions:

asSetSubstitutions(“var1=sub1,var2=sub2,...”)

This command must be issued beforeiocInit .

After an IOC is initialized the access security database can be changed. The preferred way is via the subroutin
described in the next section. It can also be changed by issuing the following command to the vxWorks shell:

asInit
92 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
User’s Guide

rocedure.

give
ecord

guration

has been
d by

only if

time.

elds but

control.
It is also possible to reissueasSetFilename and/orasSetSubstitutions beforeasInit . If any error occurs
during asInit the old access security configuration is maintained. It isNOT permissable to callasInit before
iocInit is called.

Restarting access security after ioc initialization is an expensive operation and should not be used as a regular p

8.3.7 Database Configuration

8.3.7.1 Access Security Group

Each database record has a fieldASGwhich holds a character string. Any database configuration tool can be used to
a value to this field. If the ASG of a record is not defined or is not equal to a ASG in the configuration file then the r
is placed inDEFAULT.

8.3.7.2 Subroutine Record Support

Two subroutines, which can be attached to a subroutine record, are available (provided withiocCore):

asSubInit
asSubProcess

If a record is created that attaches to these routines, it can be used to force the IOC to load a new access confi
database. To change the access configuration:

1. Modify the file specified by the last call toasSetFilename so that it contains the new configuration desired.

2. Write a 1 to the subroutine recordVAL field. Note that this can be done via channel access.

The following action is taken:

3. When the value is found to be 1,asInit is called and the value set back to 0.

4. The record is treated as an asynchronous record. Completion occurs when the new access configuration
initialized or a time-out occurs. If initialization fails the record is placed into alarm with a severity determine
BRSV.

8.3.7.3 Record Type Description

Each field of each record type has an associated access security level ofASL0 or ASL1. See the chapter “Database
Definition” for details.

8.3.8 Example:

Lets design a set of rules for a Linac. Assume the following:

1. Anyone can have read access to all fields at anytime.

2. Linac engineers, located in the injection control or control room, can have write access to most level 0 fields
the Linac is not in operational mode.

3. Operators, located in the injection control or control room, can have write access to most level 0 fields any

4. The operations supervisor, linac supervisor, and the application developers can have write access to all fi
must have some way of not changing something inadvertently.

5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed under tighter
These will follow rules 1 and 4 but not 2 or 3.

6. IOC channel access clients always have level 1 write privilege.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 93

Chapter 8: Access Security
User’s Guide
Most Linac IOC records will not have theASGfield defined and will thus be placed in ASG “DEFAULT". The following
records will have anASG defined:

• LI:OPSTATE and any other records that need tighter control haveASG="critical ". One such record could be
a subroutine record used to cause a new access configuration file to be loaded.LI_OPSTATE has the value (0,1)
if the Linac is (not operational, operational).

• LI:lev1permit has ASG="permit ". In order for theopSup , linacSup , or an appDev to have write
privilege to everything this record must be set to the value 1.

The following access configuration satisfies the above rules.

UAG(op) {op1,op2,superguy}
UAG(opSup) {superguy}
UAG(linac) {waw,nassiri,grelick,berg,fuja,gsm}
UAG(linacSup) {gsm}
UAG(appDev) {nda,kko}
HAG(icr) {silver,phebos,gaea}
HAG(cr) {mars,hera,gold}
HAG(ioc) {ioclic1,ioclic2,ioclid1,ioclid2,ioclid3,ioclid4,ioclid5}
ASG(DEFAULT) {

INPA(LI:OPSTATE)
INPB(LI:lev1permit)
RULE(0,WRITE) {

UAG(op)
HAG(icr,cr)
CALC(”A=1”)

}
RULE(0,WRITE) {

UAG(op,linac,appdev)
HAG(icr,cr)
CALC(”A=0”)

}
RULE(1,WRITE) {

UAG(opSup,linacSup,appdev)
CALC("B=1")

}
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(permit) {

RULE(0,WRITE) {
 UAG(opSup,linacSup,appDev)

 }
RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}
ASG(critical) {

INPB(LI:lev1permit)
RULE(1,WRITE) {

UAG(opSup,linacSup,appdev)
94 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Design Summary

almost
nt/server
amically
the rules,
impact

base or

s are not
CALC("B=1")
}

 RULE(1,READ)
RULE(1,WRITE) {

HAG(ioc)
}

}

8.4 Design Summary

8.4.1 Summary of Functional Requirements

A brief summary of the Functional Requirements is:

1. Each field of each record type is assigned an access security level.

2. Each record instance is assigned to a unique access security group.

3. Each user is assigned to one or more user access groups.

4. Each node is assigned to a host access group.

5. For each access security group a set of access rules can be defined. Each rule specifies:
a. Access security level
b. READ or READ/WRITE access.
c. An optional list of User Access Groups or * meaning anyone.
d. An optional list of Host Access Groups or * meaning anywhere.
e. Conditions based on values of process variables

8.4.2 Additional Requirements

8.4.2.1 Performance

Although the functional requirements doesn’t mention it, a fundamental goal is performance. The design provides
no overhead during normal database access and moderate overhead for the following: channel access clie
connection, ioc initialization, a change in value of a process variable referenced by an access calculation, and dyn
changing a records access control group. Dynamically changing the user access groups, host access groups, or
however, can be a time consuming operation. This is done, however, by a low priority IOC task and thus does not
normal ioc operation.

8.4.2.2 Generic Implementation

Access security should be implemented as a stand alone system, i.e. it should not be imbedded tightly in data
channel access.

8.4.2.3 No Access Security within an IOC

Within an IOC no access security is invoked. This means that database links and local channel access clients call
subject to access control. Also test routines such as dbgf should not be subject to access control.

8.4.2.4 Defaults

It must be possible to easily define default access rules.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 95

Chapter 8: Access Security
Design Summary

dge of
database,

client
eates a
ved from

lls
it

result

access

hange in
ilege is

it
8.4.2.5 Access Security is Optional

When an IOC is initialized, access security is optional.

8.4.3 Design Overview

The implementation provides a library of routines for accessing the security system. This library has no knowle
channel access or IOC databases, i.e. it is generic. Database access, which is responsible for protecting an IOC
calls library routines to add each IOC record to one of the access control groups.

Lets briefly discuss the access security system and how database access and channel access interact with it.

8.4.3.1 Configuration File

User access groups, host access groups, and access security groups are configured via an ASCII file.

8.4.3.2 Access Security Library

The access security library consists of the following groups of routines: initialization, group manipulation,
manipulation, access computation, and diagnostic. The initialization routine reads a configuration file and cr
memory resident access control database. The group manipulation routines allow members to be added and remo
access groups. The client routines provide services for clients attached to members.

8.4.3.3 IOC Database Access Security

The interface between an IOC database and the access security system.

8.4.3.4 Channel Access Security

Whenever the Channel Access broadcast server receives aca_search request and finds the process variable, it ca
asAddClient . Whenever it disconnects it callsasRemoveClient . Whenever it issues a get or put to the database
must callasCheckGet or asCheckPut .

Channel access is responsible for implementing the requirement of allowing the user to be changed dynamically.

8.4.4 Comments

It is likely that the access rules will be defined such that many IOCs will attach to a common process variable. As a
the IOC containing the PV will have many CA clients.

What about password protection and encryption? I maintain that this is a problem to be solved in a level above the
security described in this document. This is the issue of protecting against the sophisticated saboteur.

8.4.5 Performance and Memory Requirements

Performance has not yet been measured but during the tests to measure memory usage no noticeable c
performance during ioc initialization or during Channel Access clients connection was noticed. Unless access priv
violated the overhead during channel access gets and puts is only an extra comparison.

In order to measure memory usage, the following test was performed:

1. A database consisting of 5000 soft analog records was created.

2. A channel access client (caput) was created that performsca_put s on each of the 5000 channels. Each time
begins a new set of puts the value increments by 1.
96 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Access Security Application Programmer’s Interface

the first

re iocInit

ry usage
rmance.

utine to

moved
3. A channel access client (caget) was created that has monitors on each of the 5000 channels.

The memory consumption was measured beforeiocInit , after iocInit , aftercaput connected to all channels, and
aftercaget connected to all 5000 channels. This was done for APS release 3.11.5 (before access security) and
version which included access security. The results were:

Before the database was loaded the memory used was 1,249,692 bytes. Thus most of the memory usage befo
resulted from storage for records. The increase since R3.11.5 results from added fields todbCommon. Fields were added
for access security, synchronous time support and for the new caching put support. The other increases in memo
result from the control blocks needed to support access control. The entire design was based on maximum perfo
This resulted in increased memory usage.

8.5 Access Security Application Programmer’s Interface

8.5.1 Definitions
typedef struct asgMember *ASMEMBERPVT;
typedef struct asgClient *ASCLIENTPVT;
typedef int (*ASINPUTFUNCPTR)(char *buf,int max_size);
typedef enum{
 asClientCOAR/*Change of access rights*/
 /*For now this is all*/
} asClientStatus;
typedef void (*ASCLIENTCALLBACK)(ASCLIENTPVT,asClientStatus);

8.5.2 Initialization
long asInitialize(ASINPUTFUNPTR inputFunction)
long asInitFile(const char *filename,const char *substitutions)
long asInitFP(FILE *fp,const char *substitutions)

These routines read an access definition file and perform all initialization necessary. The caller must provide a ro
provide input lines forasInitialize. asInitFile andasInitFP do their own input and also perform macro
substitutions.

The initilization routines can be called multiple times. If an access system already exists the old definitions are re
and the new one initialized. Existing members are placed in the newASGs.

R3.11.5 After
Before iocInit 4,244,520 4,860,840
After iocInit 4,995,416 5,964,904
After caput 5,449,780 6,658,868
After caget 8,372,444 9,751,796
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 97

Chapter 8: Access Security
Access Security Application Programmer’s Interface

system

tatus of

lue of the

puted.
8.5.3 Group manipulation

8.5.3.1 add Member

long asAddMember(ASMEMBERPVT *ppvt, char *asgName);

This routine adds a new member to ASGasgName. The calling routine must provide storage forASMEMBERPVT. Upon
successful return *ppvt will be equal to the address of storage used by the access control system. The access
keeps an orphan list for allasgNames not defined in the access configuration.

The caller must provide permanent storage forasgName.

This routine returnsS_asLib_asNotActive without doing anything if access control is not active.

8.5.3.2 remove Member

long asRemoveMember(ASMEMBERPVT *ppvt);

This routine removes a member from an access control group. If any clients are still present it returns an error s
S_asLib_clientExists without removing the member.

This routine returns S_asLib_asNotActive without doing anything if access control is not active.

8.5.3.3 get Member Pvt

void *asGetMemberPvt(ASMEMBERPVT pvt);

For each member, the access system keeps a pointer that can be used by the caller. This routine returns the va
pointer.

This routine returns NULL if access security is not active

8.5.3.4 put Member Pvt

long asPutMemberPvt(ASMEMBERPVT pvt,void *userPvt);

This routine is used to set the pointer returned by asGetMemberPvt.

This routine returnsS_asLib_asNotActive without doing anything if access control is not active.

8.5.3.5 change Group

long asChangeGroup(ASMEMBERPVT *ppvt, char *newAsgName);

This routine changes the group for an existing member. The access rights of all clients of the member are recom

The caller must provide permanent storage fornewAsgName.

This routine returnsS_asLib_asNotActive without doing anything if access control is not active.

8.5.4 Client Manipulation

8.5.4.1 add Client

long asAddClient(ASCLIENTPVT *ppvt,ASMEMBERPVT pvt,int asl,
 char *user,char*host);

This routine adds a client to an ASG member. The calling routine must provide storage forASCLIENTPVT.
ASMEMBERPVT is the value that was set by callingasAddMember. asl is the access security level.

The caller must provide permanent storage foruser andhost .
98 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Access Security Application Programmer’s Interface

ue of the
This routine returnsS_asLib_asNotActive without doing anything if access control is not active.

8.5.4.2 change Client

long asChangeClient(ASCLIENTPVT ppvt,int asl,
char *user,char*host);

This routine changes one or more of the valuesasl , user , andhost for an existing client. Again the caller must provide
permanent storage foruser and host . It is permissible to use the sameuser and host used in the call to
asAddClient with different values.

This routine returnsS_asLib_asNotActive without doing anything if access control is not active.

8.5.4.3 remove Client

long asRemoveClient(ASCLIENTPVT *pvt);

This call removes a client.

This routine returnsS_asLib_asNotActive without doing anything if access control is not active.

8.5.4.4 get Client Pvt

void *asGetClientPvt(ASCLIENTPVT pvt);

For each client, the access system keeps a pointer that can be used by the caller. This routine returns the val
pointer.

This routine returnsNULL if access security is not active.

8.5.4.5 put Client Pvt

void asPutClientPvt(ASCLIENTPVT pvt, void *userPvt);

This routine is used to set the pointer returned byasGetClientPvt .

8.5.4.6 register Callback

long asRegisterClientCallback(ASCLIENTPVT pvt,
ASCLIENTCALLBACK pcallback);

 This routine registers a callback that will be called whenever the access privilege of the client changes.

This routine returnsS_asLib_asNotActive without doing anything if access control is not active.

8.5.4.7 check Get

long asCheckGet(ASCLIENTPVT pvt);

This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’t have) get access rights.

8.5.4.8 check Put

long asCheckPut(ASCLIENTPVT pvt);

This routine, actually a macro, returns (TRUE,FALSE) if the client (has, doesn’t have) put access rights
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 99

Chapter 8: Access Security
Access Security Application Programmer’s Interface

d

er than

d as an
nt.
8.5.5 Access Computation

8.5.5.1 compute all Asg

long asComputeAllAsg(void);

This routine callsasComputeAsg for each access security group.

This routine returnsS_asLib_asNotActive without doing anything if access control is not active.

8.5.5.2 compute Asg

long asComputeAsg(ASG *pasg);

This routine calculates allCALCentries for theASGand callsasCompute for each client of each member of the specifie
access security group.

This routine returnsS_asLib_asNotActive without doing anything if access control is not active.

8.5.5.3 compute access
rights

long asCompute(ASCLIENTPVT pvt);

This routine computes the access rights of a client. This routine is normally called by the access library itself rath
use code.

This routine returnsS_asLib_asNotActive without doing anything if access control is not active.

8.5.6 Diagnostic

8.5.6.1 dump

int asDump(void (*member)(ASMEMBERPVT),
void (*client)(ASCLIENTPVT),int verbose);

This routine prints the current access security database. If verbose is 0 (FALSE), then only the information obtained from
the access security file is printed.

If verbose isTRUEthen additional information is printed. The value of eachINP is displayed. The list of members
belonging to each ASG and the clients belonging to each member are displayed. If member callback is specifie
argument, then it is called for each member. If client callback is specified, it is called for each access security clie

8.5.6.2 dump UAG

int asDumpUag(char *uagname)

This routine displays the specifiedUAG or if uagname is NULL eachUAG defined in the access security database.

8.5.6.3 dump HAG

int asDumpHag(char *hagname)

This routine displays the specifiedUAG or if uagname is NULL eachUAG defined in the access security database.

8.5.6.4 dump Rules

int asDumpRules(char *asgname)
100 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Database Access Security

ss

urity

ion for

be
n. ASP
This routine displays the rules for the specifiedASGor if asgname is NULLthe rules for each ASG defined in the acce
security database.

8.5.6.5 dump member

int asDumpMem(char *asgname,
void (*memcallback)(ASMEMBERPVT),int clients)

This routine displays the member and, if clients isTRUE, client information for the specifiedASGor if asgname is NULL
the member and client information for eachASGdefined in the access security database. It also callsmemcallback for
each member if this argument is notNULL.

8.5.6.6 dump hash table

int asDumpHash(void)

This shows the contents of the hash table used to locateUAGs andHAGs,

8.6 Database Access Security

8.6.1 Access Level definition

The definition of access level means that a level is defined for each field of each record type.

1. StructurefldDes (dbBase .h), which describes the attributes of each field, contains a field access_sec
_level . In addition definitions exist for the symbols:ASL0 andASL1.

2. Each field description in a record description contains a field with the valueASLx.

The meanings of the Access Security Level definitions are as follows:

• ASL0Assigned to fields used during normal operation

• ASL1Assigned to fields that may be sensitive to change. Permission to access this level implies permiss
ASL0.

Most record types assign ASL as follows: The fieldsVAL, RES(Reset), andCMDuse the valueASL0. All other fields use
ASL1.

8.6.2 Access Security Group definition

dbCommoncontains the fieldsASGand ASP. ASG(Access Security Group) is a character string. The value can
assigned via a database configuration tool or else a utility could be provided to assign values during ioc initializatio
is an access security private field. It contains the address of anASGMEMBER.

8.6.3 Access Client Definition

StructdbAddr contains a fieldasPvt , which contains the address of anASGCLIENT. This definition is also added to
structdb_addr so that old database access also supports access security.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 101

Chapter 8: Access Security
Database Access Security

s the

Init it

tion

of the

database.
8.6.4 Database Access Library

Two files asDbLib .c andasCa.c implement the interface between IOC databases and access control. It contain
following routines:

8.6.4.1 Initialization

int asSetFilename(char *acf)

Calling this routine sets the filename of an access configuration file. The next call toasInit uses this file. This routine
must be called beforeiocInit otherwise access configuration is disabled. Is access security is disabled during ioc
will never be turned on.

int asSetSubstitutions(char *substitutions)

This routine specifies macro substitutions.

int asInit()
int asInitAsyn(ASDBCALLBACK *pcallback)

This routines callasInitialize . If the current access configuration file, as specified byasSetFilename , is NULL
then the routine just returns, otherwise the configuration file is used to create the access configuration database.

This routine is called byiocInit . asInit can also be called at any time to change the access configura
information.

asInitAsyn spawns a taskasInitTask to perform the initialization. This allowsasInitAsyn to be called from a
subroutine called by the process entry of a subroutine record.asInitTask calls taskwdInsert so that if it suspends
for some reasontaskwd can detect the failure. After initialization all records in the database are made members
appropriate access control group.

If the caller provides anASDBCALLBACKthen when either initialization completes ortaskwd detects a failure the users
callback routine is called via one of the standard callback tasks.

asInitAsyn will return a value of-1 if access initialization is already active. It returns 0 ifasInitTask is
successfully spawned.

8.6.4.2 Routines used by Channel Access Server

int asDbGetAsl(void *paddr)

Get Access Security level for the field referenced by a database access structure. The argument is defined as avoid * so
that both old and new database access can be used.

void * asDbGetMemberPvt(void *paddr)

GetASMEMBERPVTfor the field referenced by a database access structure. The argument is defined as avoid * so that
both old and new database access can be used.

8.6.4.3 Routine to test asAddClient

int astac(char *pname,char *user,char *host)

This is a routine to testasAddClient . It simulates the calls that are made by Channel Access.

8.6.4.4 Subroutines attached to a subroutine record

These routines are provided so that a channel access client can force an ioc to load a new access configuration
102 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Channel Access Security

ore
nning.
cked is

hannel
the CA

icated to

t
l or

d to the
ge then
long asSubInit(struct subRecord *prec,int pass)
long asSubProcess(struct subRecord *prec)

These are routines that can be attached to a subroutine record. Whenever a 1 is written to the record,asSubProcess
calls asInit . If asInit returns success, it returns with asynchronously. WhenasInitTask calls the completion
routine supplied byasSubProcess , the return status is used to place the record in alarm.

8.6.4.5 Diagnostic Routines

These routines provide interfaces to theasDump routines described in the previous chapter. They do NOT lock bef
calling the associated routine. Thus they may fail if the access security configuration is changing while they are ru
However the danger of the user accidently aborting a command and leaving the access security system lo
considered a risk that should be avoided.

asdbdump(void)

This routine callsasDump with a member callback and with verboseTRUE.

aspuag(char *uagname)

This routine callsasDumpUag.

asphag(char *hagname)

This routine callsasDumpHag.

asprules(char *asgname)

This routine callsasDumpRules .

aspmem(char *asgname,int clients)

This routine callsasDumpMem.

8.7 Channel Access Security
EPICS Access Security is designed to protect Input Output Controllers (IOCs) from unauthorized access via the C
Access (CA) network transparent communication software system. This chapter describes the interaction between
server and the Access Security system. It also briefly describes how the current access rights state is commun
clients of the EPICS control system via the CA communication system and the CA client interface.

8.7.1 CA Server Interfaces to the Access Security System

The CA server callsasAddClient() andasRegisterClientCallback() for each of the channels that a clien
connects to the server. The routineasRemoveClient() is called whenever the client clears (removes) a channe
when the client disconnects.

The server maintains storage for the clients host and user names. The initial value of these strings are supplie
server when the client connects and can be updated at any time by the client. When these strings chan
asChangeClient() is called for each of the channels maintained by the server for the client.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 103

Chapter 8: Access Security
Access Control: Implementation Overview

is denied

t. If there
e server

with
t state
then the
event. If
server re-

rom the

hed. The
check for
ess request
an error
d by an

stering a
all back

quest is
then an

access
and the
initially

le.
The server checks for read access when processing gets and for write access when processing puts. If access
then an exception message is sent to the client.

The server checks for read access when processing requests to register an event callback (monitor) for the clien
is read access the server always sends an initial update indicating the current value. If there isn’t read access th
sends one update indicating no read access and disables subsequent updates.

The server receives asynchronous notification of access rights change via the callback registered
asRegisterClientCallback() . When a channel’s access rights change the server communicates the curren
to the client library. If read access to a channel is lost and there are events (monitors) registered on the channel
server sends an update to the client for each of them indicating no access and disables future updates for each
read access is reestablished to a channel and there are events (monitors) registered on the channel then the
enables updates and sends an initial update message to the client for each of them.

8.7.2 Client Interfaces

Additional details on the channel access client side callable interfaces to access security can be obtained f
“Channel Access Reference Manual”.

The client library stores and maintains the current state of the access rights for each channel that it has establis
client library receives asynchronous updates of the current access rights state from the server. It uses this state to
read access when processing gets and for write access when processing puts. If a program issues a channel acc
that is inconsistent with the client library’s current knowledge of the access rights state then access is denied and
code is returned to the application. The current access rights state as known by the client library can be teste
applications program with the C macrosca_read_access() andca_write_access() .

An application program can also receive asynchronous notification of changes to the access rights state by regi
function to be called back when the client library updates its storage of the access rights state. The application’s c
function is installed for this purpose by callingca_replace_access_rights_event() .

If the access rights state changes in the server after a request is queued in the client library but before the re
processed by the server then it is possible that the request will fail in the server. Under these circumstances
exception will be raised in the client.

The server always sends one update to the client when the event (monitor) is initially registered. If there isn’t read
then the status in the arguments to the application program’s event call back function indicates no read access
value in the arguments to the clients event call back is set to zero. If the read access right changes after the event is
registered then another update is supplied to the application programs call back function.

8.8 Access Control: Implementation Overview
This chapter provides a few aids for reading the access security code. Include fileasLib .h describes the control blocks
used by the access security library.

8.8.1 Implementation Overview

The following files form the access security system:

• asLib.h Definitions for the portion of access security that is independent of IOC databases.

• asDbLib.h Definitions for access routines that interface to an IOC database.

• asLib_lex.l Lex andYacc (actually EPICSflex andantelope) are used to parse the access configuration fi
This is thelex input file.
104 EPICS IOC Application Developer’s Guide

Chapter 8: Access Security
Access Control: Implementation Overview

of the

provide
ritical
outines.
ception

e access
• asLib.y This is theyacc input file. Note that it includesasLibRoutines .c, which do most of the work.

• asLibRoutines.c These are the routines that implement access security. This code has no knowledge
database or channel access. It is a general purpose access security implementation.

• asDbLib.c This contains the code for interfacing access security to the IOC database.

• asCa.c This code contains the channel access client code that implements theINP andCALCdefinitions in an
access security database.

• ascheck.c The Unix program which performs a syntax check on a configuration file.

8.8.2 Locking

Because it is possible for multiple tasks to simultaneously modify the access security database it is necessary to
locking. Rather than try to provide low level locking, the entire access security database is locked during c
operations. The only things this should hold up are access initialization, CA searches, CA clears, and diagnostic r
It should NEVER cause record processing to wait. In addition CA gets and puts should never be delayed. One ex
exists. If the ASG field of a record is changed thenasChangeGroup is called which locks.

All operations invoked from outside the access security library that cause changes to the internal structures of th
security database.routines lock.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 105

Chapter 8: Access Security
Structures
8.9 Structures

ASBASE
 uagList
 hagList
 asgList
 phash

ASG
 node
 name
 inpList
 ruleList
 memberList
 pavalue
 inpBad
 inpChanged

UAG
 node
 name
 list

HAG
 node
 name
 list

UAGNAME
 node
 user

HAGNAME
 node
 host

ASGINP
 node
 inp
 capvt
 pasg

inpIndex

ASGRULE
 node
 access
 level
 inpUsed
 result
 calc
 rpcl
 uaglist
 hagList

ASGHAG
 node
 phag

ASGUAG
 node
 puag

ASGCLIENT
 node

pasgMember
 user
 host
 userPvt
 pcallback
 level
 access

ASGMEMBER
 node
 pasg
 clientList
 asgName
 userPvt
106 EPICS IOC Application Developer’s Guide

system
must be

result of it

his

as well as
Chapter 9: IOC Test Facilities

9.1 Overview
This chapter describes a number of IOC test routines that are of interest to both application developers and
developers. All routines can be executed from the vxWorks shell. The parentheses are optional, but the arguments
separated by commas. All character string arguments must be enclosed in “”.

The user should also be aware of the fieldTPRO, which is present in every database record. If it is setTRUEthen a
message is printed each time its record is processed and a message is printed for each record processed as a
being processed.

9.2 Database List, Get, Put

9.2.1 dbl

Database List:

dbl(“<record type>”,”<filename>”,"<field list>")

Examples

dbl
dbl(“ai”,0,0)

This command prints the names of records in the run time database. If<record type> is not specified, all records are
listed. If<record type> is specified, then only the names of the records of that type are listed.

If <filename> is specified the output is written to the specified file (if the file already exists it is overwritten). If t
argument is 0 then the output is sent tostdout .

If <field list> is given then the values of the fields specified are also printed.

9.2.2 dbgrep

List Record Names That Match a Pattern:

dbgrep(“<pattern>”)

Examples

dbgrep(“S0*”)
dbgrep(“*gpibAi*”)

Lists all record names that match a pattern. The pattern can contain any characters that are legal in record names
“*”, which matches 0 or more characters.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 107

Chapter 9: IOC Test Facilities
Database List, Get, Put

t

terest
9.2.3 dba

Database Address:

dba(“<record_name.field_name>”)

Example

dba(“aitest”)
dba(“aitest.VAL”)

This command callsdbNameToAddr and then prints the value of each field in thedbAddr structure describing the field.
If the field name is not specified thenVAL is assumed (the two examples above are equivalent).

9.2.4 dbgf

Get Field:

dbgf(“<record_name.field_name>”)

Example:

dbgf(“aitest”)
dbgf)“aitest.VAL”)

This performs adbNameToAddr and then adbGetField . It prints the field type and value. If the field name is no
specified thenVAL is assumed (the two examples above are equivalent).

9.2.5 dbpf

Put Field:

dbpf(“<record_name.field_name>”,”<value>”)

Example:

dbpf(“aitest”,”5.0”)

This command performs adbNameToAddr followed by adbPutField anddbgf . If <field_name> is not specified
VAL is assumed.

9.2.6 dbpr

Print Record:

dbpr(“<record_name>”,<interest level>)

Example

dbpr(“aitest”,2)

This command prints all fields of the specified record up to and including those with the indicated interest level. In
level has one of the following values:

• 0: Fields of interest to an Application developer and that can be changed as a result of record processing.

• 1: Fields of interest to an Application developer and that do not change during record processing.

• 2: Fields of major interest to a System developer.

• 3: Fields of minor interest to a System developer.
108 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Breakpoints

g.

as been
d. This

that is

t).
tions
et have
• 4: Fields of no interest.

9.2.7 dbtr

Test Record:

dbtr(“<record_name>”)

This callsdbNameToAddr, thendbProcess and finallydbpr (interest level 3). Its purpose is to test record processin

9.2.8 dbnr

Print number of records:

dbnr(<all_recordtypes>)

This command displays the number of records of each type and the total number of records. Ifall_record_types is
0 then only record types with record instances are displayed otherwise all record types are displayed.

9.3 Breakpoints
A breakpoint facility that allows the user to step through database processing on a per lockset basis. This facility h
constructed in such a way that the execution of all locksets other than ones with breakpoints will not be interrupte
was done by executing the records in the context of a separate task.

The breakpoint facility records all attempts to process records in a lockset containing breakpoints. A record
processed through external means, e.g.: a scan task, is called an entrypoint into that lockset. Thedbstat command
described below will list all detected entrypoints to a lockset, and at what rate they have been detected.

9.3.1 dbb

Set Breakpoint:

dbb(“<record_name>”)

Sets a breakpoint in a record. Automatically spawns thebkptCont , or breakpoint continuation task (one per lockse
Further record execution in this lockset is run within this task’s context. This task will automatically quit if two condi
are met, all breakpoints have been removed from records within the lockset, and all breakpoints within the locks
been continued.

9.3.2 dbd

Remove Breakpoint:

dbd(”<record_name>”)

Removes a breakpoint from a record.

9.3.3 dbs

Single Step:
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 109

Chapter 9: IOC Test Facilities
Breakpoints

tically

rinted

kpoints
the

d.
dbs(“<record_name>”)

Steps through execution of records within a lockset. If this command is called without an argument, it will automa
step starting with the last detected breakpoint.

9.3.4 dbc

Continue:

dbc(“<record_name>”)

Continues execution until another breakpoint is found. This command may also be called without an argument.

9.3.5 dbp

Print Fields Of Suspended Record:

dbp("<record_name>,<interest_level>)

Prints out the fields of the last record whose execution was suspended.

9.3.6 dbap

Auto Print:

dbap(“<record_name>”)

Toggles the automatic record printing feature. If this feature is enabled for a given record, it will automatically be p
after the record is processed.

9.3.7 dbstat

Status:

dbstat

Prints out the status of all locksets that are suspended or contain breakpoints. This lists all the records with brea
set, what records have the autoprint feature set (bydbap), and what entrypoints have been detected. It also displays
vxWorks task ID of the breakpoint continuation task for the lockset. Here is an example output from this call:

LSet: 00009 Stopped at: so#B: 00001 T: 0x23cafac
 Entrypoint: so#C: 00001 C/S: 0.1
 Breakpoint: so(ap)
LSet: 00008#B: 00001 T: 0x22fee4c
 Breakpoint: output

The above indicates that two locksets contain breakpoints. One lockset is stopped at record “so .” The other is not
currently stopped, but contains a breakpoint at record “output .” “ LSet :” is the lockset number that is being considere
“#B: ” is the number of breakpoints set in records within that lockset. “T: ” is the vxWorks task ID of the continuation
task. “C: ” is the total number of calls to the entrypoint that have been detected. “C/S: ” is the number of those calls that
have been detected per second.(ap) indicates that the autoprint feature has been turned on for record “so .”
110 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Error Logging

e means

l
ng:
9.4 Error Logging

9.4.1 eltc

Display error log messages on console:

eltc(int noYes)

This determines if error messages are displayed on vxWorks console. A value of 0 means no and any other valu
yes.

9.5 Hardware Reports

9.5.1 dbior

I/O Report:

dbior (“<driver_name>”,<interest level>)

This command calls the report entry of the indicated driver. If<driver_name> is not specified then the report for al
drivers is generated. It also calls the report entry of all device support modules. Interest level is one of the followi

• 0: Print a short report for each module.

• 1: Print additional information.

• 2: Print even more info. The user may be prompted for options.

9.5.2 dbhcr

Hardware Configuration Report:

dbhcr("filename")

This command produces a report of all hardware links. To use it on the IOC, issue the command:

dbhcr > report
 or

dbhcr("report")

The report will probably not be in the sort order desired. The Unix command:

sort report > report.sort

should produce the sort order you desire.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 111

Chapter 9: IOC Test Facilities
Scan Reports

 s

l event
9.6 Scan Reports

9.6.1 scanppl

Print Periodic Lists:

scanppl(double rate)

This routine prints a list of all records in the periodic scan list of the specified rate. If rate is 0.0 all period lists arehown.

9.6.2 scanpel

Print Event Lists:

scanpel(int event_number)

This routine prints a list of all records in the event scan list for the specified event nunber. If event_number is 0 al
scan lists are shown.

9.6.3 scanpiol

Print I/O Event Lists:

scanpiol

This routine prints a list of all records in the I/O event scan lists.

9.7 Time Server Report
NOTE: TSreport is implemented bt drvTS.c. It is only available on vxWorks

9.7.1 TSreport

Format:

TSreport

This routine prints out information about the Time server. This includes:

• Slave or Master

• Soft or Hardware synchronized

• Clock and Sync rates

• etc.
112 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Access Security Commands

w access
r
record.

er access
9.8 Access Security Commands

9.8.1 asSetSubstitutions

Format:

asSetSubstitutions("substitutions")

Specifies macro substitutions used when access security is initialized.

9.8.2 asSetFilename

Format:

asSetFilename(“<filename>”)

This command defines a new access security file.

9.8.3 asInit

Format:

asInit

This command reinitializes the access security system. It rereads the access security file in order to create the ne
security database. This command is useful either because theasSetFilename command was used to change the file o
because the file itself was modified. Note that it is also possible to reinitialize the access security via a subroutine
See the access security document for details.

9.8.4 asdbdump

Format:

asdbdump

This provides a complete dump of the access security database.

9.8.5 aspuag

Format:

aspuag(“<user access group>”)

Print the members of the user access group. If no user access group is specified then the members of all us
groups are displayed.

9.8.6 asphag

Format:

asphag(“<host access group>”)
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 113

Chapter 9: IOC Test Facilities
Channel Access Reports

t access

ified. If

y lines
er of

t, the
lapsed
onse was
e bytes
lient’s
Print the members of the host access group. If no host access group is specified then the members of all hos
groups are displayed.

9.8.7 asprules

Format:

asprules(“<access security group>”)

Print the rules for the specified access security group or if no group is specified for all groups.

9.8.8 aspmem

Format:

aspmem(“<access security group>”, <print clients>)

Print the members (records) that belong to the specified access security group, for all groups if no group is spec
<print clients> is (0, 1) then Channel Access clients attached to each member (are not, are) shown.

9.9 Channel Access Reports

9.9.1 ca_channel_status

Format:

ca_channel_status(taskid)

Prints status for each channel in use by specialized vxWorks task.

9.9.2 casr

Channel Access Server Report

casr(<level>)

Level can have one of the following values:

0
Prints server’s protocol version level and a one line summary for each client attached. The summar
contain the client’s login name, client’s host name, client’s protocol version number, and the numb
channel created within the server by the client.

1
Level one provides all information in level 0 and adds the task id used by the server for each clien
client’s IP protocol type, the file number used by the server for the client, the number of seconds e
since the last request was received from the client, the number of seconds elapsed since the last resp
sent to the client, the number of unprocessed request bytes from the client, the number of respons
which have not been flushed to the client, the client’s IP address, the client’s port number, and the c
state.

2

114 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Interrupt Vectors

client
f bytes
list of
Level two provides all information in levels 0 and 1 and adds the number of bytes allocated by each
and a list of channel names used by each client. Level 2 also provides information about the number o
in the server’s free memory pool, the distribution of entries in the server’s resource hash table, and the
IP addresses to which the server is sending beacons. The channel names are shown in the form:

<name>(nrw)

where
n is number of ca_add_events the client has on this channel
r is (-,R) if client (does not, does) have read access to the channel.
w is(-, W) if client (does not, does) have write access to the channel.

9.9.3 dbel

Format:

dbel(“<record_name>”)

This routine prints the Channel Access event list for the specified record.

9.9.4 dbcar

Database to Channel Access Report - See “Record Link Reports”

9.10 Interrupt Vectors

9.10.1 veclist

Format:

veclist

NOTE: Only available on vxWorks

Print Interrupt Vector List

9.11 EPICS

9.11.1 epicsPrtEnvParams

Format:

epicsPrtEnvParams

Print Environment Variables
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 115

Chapter 9: IOC Test Facilities
Database System Test Routines

s
Works
ution

e

.

9.11.2 epicsRelease

Format:

coreRelease

Print release of iocCore.

9.12 Database System Test Routines
These routines are normally only of interest to EPICS system developers NOT to Application Developers.

9.12.1 dbt

Measure Time To Process A Record:

dbt(“<record_name”)

Times the execution of 100 successive processings of recordrecord_name . Note that process passive and forward link
within this record may incur the processing of other records in its lockset. This function is a wrapper around the Vx
timexN() function, and directly displays its output. Therefore one must divide the result by 100 to get the exec
time for one processing ofrecord_name .

9.12.2 dbtgf

Test Get Field:

dbtgf(“<record_name.field_name>”)

Example:

dbtgf(“aitest”)
dbtgf)“aitest.VAL”)

This performs adbNameToAddr and then callsdbGetField with all possible request types and options. It prints th
results of each call. This routine is of most interest to system developers for testing database access.

9.12.3 dbtpf

Test Put Field:

dbtpf(“<record_name.field_name>”,”<value>”)

Example:

dbtpf(“aitest”,”5.0”)

This command performs adbNameToAddr, then callsdbPutField, followed bydbgf for each possible request type
This routine is of interest to system developers for testing database access.

9.12.4 dbtpn

Test Put Notify:
116 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Record Link Reports

ge

ce, which
dbtpn(“<record_name.field_name>”,”<value>”)

Example:

dbtpn(“aitest”,”5.0”)

This command performs adbNameToAddr, then callsdbPutNotify and has a callback routine that prints a messa
when it is called. This routine is of interest to system developers for testing database access.

9.13 Record Link Reports

9.13.1 dblsr

Lock Set Report:

dblsr(<recordname>,<level>)

This command generates a report showing the lock set to which each record belongs. Ifrecordname is 0 all records are
shown, otherwise only records in the same lock set asrecordname are shown.

level can have the following values:

0 - Show lock set information only.
1 - Show each record in the lock set.
2 - Show each record and all database links in the lock set.

9.13.2 dbcar

Database to channel access report

dbcar(<recordname>,<level>)

This command generates a report showing database channel access links. Ifrecordname is 0 then information about all
records is shown otherwise only information about the specified record.

level can have the following values:

0 - Show summary information only.
1 - Show summary and each CA link that is not connected.
2 - Show summary and status of each CA link.

9.13.3 dbhcr

Report hardware links. See “Hardware Reports”.

9.14 Old Database Access Testing
These routines are of interest to EPICS system developers. They are used to test the old database access interfa
is still used by Channel Access.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 117

Chapter 9: IOC Test Facilities
Routines to dump database information

ts
9.14.1 gft

Get Field Test:

gft(“<record_name.field_name>”)

Example:

gft(“aitest”)
gft(“aitest.VAL”)

This performs adb_name_to_addr and then callsdb_get_field with all possible request types. It prints the resul
of each call. This routine is of interest to system developers for testing database access.

9.14.2 pft

Put Field Test:

pft(“<record_name.field_name>”,”<value>”)

Example:

pft(“aitest”,”5.0”)

This command performs adb_name_to_addr , db_put_field , db_get_field and prints the result for each
possible request type. This routine is of interest to system developers for testing database access.

9.14.3 tpn

Test Put Notify:

tpn(“<record_name.field_name>”,”<value>”)

Example:

tpn(“aitest”,”5.0”)

This routine testsdbPutNotify via the old database access interface.

9.15 Routines to dump database information

9.15.1 dbDumpPath

Dump Path:

dbDumpPath(pdbbase)

 dbDumpPath(pdbbase)

The current path for database includes is displayed.
118 EPICS IOC Application Developer’s Guide

Chapter 9: IOC Test Facilities
Routines to dump database information

en the
9.15.2 dbDumpMenu

Dump Menu:

dbDumpMenu(pdbbase,”<menu>”)

 dbDumpMenu(pdbbase,”menuScan”)

If the second argument is 0 then all menus are displayed.

9.15.3 dbDumpRecordType

Dump Record Description:

dbDumpRecordType(pdbbase,”<record type>”)

 dbDumpRecordType(pdbbase,”ai”)

If the second argument is 0 then all descriptions of all records are displayed.

9.15.4 dbDumpFldDes

Dump Field Description:

dbDumpFldDes(pdbbase,”<record type>”,”<field name>”)

 dbDumpFldDes(pdbbase,”ai”,”VAL”)

If the second argument is 0 then the field descriptions of all records are displayed. If the third argument is 0 th
description of all fields are displayed.

9.15.5 dbDumpDevice

Dump Device Support:

dbDumpDevice(pdbbase,”<record type>”)

 dbDumpDevice(pdbbase,”ai”)

If the second argument is 0 then the device support for all record types is displayed.

9.15.6 dbDumpDriver

Dump Driver Support:

dbDumpDriver(pdbbase)

 dbDumpDriver(pdbbase)
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 119

Chapter 9: IOC Test Facilities
Routines to dump database information

ermines

verbose
9.15.7 dbDumpRecord

Dump Record Instances:

dbDumpRecord(pdbbase,”<record type>”,level)

 dbDumpRecords(pdbbase,”ai”)

If the second argument is 0 then the record instances for all record types is displayed. The third argument det
which fields are displayed just like for the commanddbpr.

9.15.8 dbDumpBreaktable

Dump breakpoint table

dbDumpBreaktable(pdbbase,name)

 dbDumpBreaktable(pdbbase,”typeKdegF”)

This command dumps a breakpoint table. If the second argument is 0 all breakpoint tables are dumped.

9.15.9 dbPvdDump

Dump the Process variable Directory:

dbPvdDump(pdbbase,verbose)

 dbPvdDump(pdbbase,0)

This command shows how many records are mapped to each hash table entry of the process variable directory. If
is not 0 then the command also displays the names which hash to each hash table entry.
120 EPICS IOC Application Developer’s Guide

ble to a
status
ardware

s, if a
bility to

essage

For a
use by a

es to all
Chapter 10: IOC Error Logging

10.1 Overview
Errors detected by an IOC can be divided into classes: Errors related to a particular client and errors not attributa
particular client. An example of the first type of error is an illegal Channel Access request. For this type of error, a
value should be passed back to the client. An example of the second type of error is a device driver detecting a h
error. This type of error should be reported to a system wide error handler.

Dividing errors into these two classes is complicated by a number of factors.

• In many cases it is not possible for the routine detecting an error to decide which type of error occurred.

• Normally, only the routine detecting the error knows how to generate a fully descriptive error message. Thu
routine decides that the error belongs to a particular client and merely returns an error status value, the a
generate a fully descriptive error message is lost.

• If a routine always generates fully descriptive error messages then a particular client could cause error m
storms.

• While developing a new application the programmer normally prefers fully descriptive error messages.
production system, however, the system wide error handler should not normally receive error messages ca
particular client.

If used properly, the error handling facilities described in this chapter can process both types of errors.

This chapter describes the following:

• Error Message Generation Routines - Routines which pass messages to the errlog Task.

• errlog Task - A task that displays error messages on the target console and also passes the messag
registered system wide error logger.

• status codes - EPICS status codes.

• iocLog- A system wide error logger supplied with base. It writes all messages to a system wide file.

NOTE: recGbl error routines are also provided. They in turn call one of the error message routines.

10.2 Error Message Routines

10.2.1 Basic Routines
 int errlogPrintf(const char *pformat, ...);
 int errlogVprintf(const char *pformat,va_list pvar);

 int errlogMessage(const char *message);
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 121

Chapter 10: IOC Error Logging
Error Message Routines

t
"The C

major,

e task
was

built on
errlogPrintf and errlogVprintf are likeprintf andvprintf provided by the standard C library, excep
that the output is sent to the errlog task. Consult any book that describes the standard C library such as
Programming Language ANSI C Edition" by Kernighan and Ritchie.

errlogMessage sends message to the errlog task

10.2.2 Log with Severity
typedef enum {

 errlogInfo,errlogMinor,errlogMajor,errlogFatal
 }errlogSevEnum;

 int errlogSevPrintf(const errlogSevEnum severity,
 const char *pformat, ...);
 int errlogSevVprintf(const errlogSevEnum severity,
 const char *pformat,va_list pvar);

 char *errlogGetSevEnumString(const errlogSevEnum severity);

 void errlogSetSevToLog(const errlogSevEnum severity);
 errlogSevEnum errlogGetSevToLog(void);

errlogSevPrintf anderrlogSevVprintf are likeerrlogPrintf and errlogVprintf except that they
add the severity to the beginning of the message in the form "sevr=<value>" where value is on of "info, minor,
fatal". Also the message is suppressed if severity is less than the current severity to suppress.

errlogGetSevEnumString gets the string value of severity.

errlogSetSevToLog sets the severity to log.errlogGetSevToLog gets the current severity to log.

10.2.3 Status Routines
void errMessage(long status, char *message);

 void errPrintf(long status, const char *pFileName,
 int lineno, const char *pformat, ...);

RoutineerrMessage (actually a macro that callserrPrintf) has the following format:

void errMessage(long status, char *message);

Where status is defined as:

• 0: Find latest vxWorks or Unix error.

• -1: Don’t report status.

• Other: See “Return Status Values” above.

errMessage , via a call toerrPrintf , prints the message, the status symbol and string values, and the name of th
which invokederrMessage . It also prints the name of the source file and the line number from which the call
issued.

The calling routine is expected to pass a descriptive message to this routine. Many subsystems provide routines
top oferrMessage which generate descriptive messages.
122 EPICS IOC Application Developer’s Guide

Chapter 10: IOC Error Logging
errlog Task

If
the

age to the

task. The
messages
e about the

explaining
ient code

tead of
An IOC global variableerrVerbose , defined as anexternal in errMdef.h , specifies verbose messages.
errVerbose is TRUEthenerrMessage should be called whenever an error is detected even if it is known that
error belongs to a specific client. IferrVerbose is FALSE thenerrMessage should be called only for errors that are
not caused by a specific client.

RoutineerrPrintf has the following format:

void errPrintf(long status, __FILE__, __LINE__,
char *fmtstring <arg1>, ...);

Where status is defined as:

• 0: Find latest vxWorks or Unix error.

• -1: Don’t report status.

• Other: See “Return Status Values”, above.

FILE and LINE are defined as:

• __FILE__ As shown orNULL if the file name and line number should not be printed.

• __LINE__ As shown

The remaining arguments are just like the arguments to the Cprintf routine.errVerbose determines if the filename
and line number are shown.

10.2.4 Obsolete Routines
int epicsPrintf(const char *pformat, ...);
int epicsVprintf(const char *pformat,va_list pvar);

These are macros that call errlogPrintf and errlogVprintf. They are provided for compatibility.

10.3 errlog Task
The error message routines can be called by any non-interrupt level code. These routines merely pass the mess
errlog Task.

Task errlog manages the messages. Messages are placed in a message queue, which is read by the errlog
message queue uses a fixed block of memory to hold all messages. When the message queue is full additional
are rejected but a count of missed messages is kept. The next time the message queue empties an extra messag
missed messages is generated.

The maximum message size is 256 characters. If a message is longer, the message is truncated and a message
that it was truncated is appended. There is a chance that long messages corrupt memory. This only happens if cl
is defective. Long messages most likely result from "%s" formats with a bad string argument.

The error message routines are partially implemented on the host. The host version just calls fprintf or vfprintf ins
using a separate task and a message queue. Thus host messages are NOT sent to a system wide error logger.

10.3.1 Add and Remove Log Listener
typedef void(*errlogListener) (const char *message);

 void errlogAddListener(errlogListener listener,void *pPrivate);
 void errlogRemoveListener(errlogListener listener);
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 123

Chapter 10: IOC Error Logging
Status Codes

the actual

e used to
e go to the

extra
st long

ues. No

r status
order

lues all

tus
These routines add/remove a callback that receives each error message. These routines are the interface to
system wide error handlers.

10.3.2 target console routines
int eltc(int yesno); /* error log to console (0 or 1) */

 int errlogInit(int bufsize);

eltc determines if errlog task writes message to the console. During error messages storms this command can b
suppress console messages. A argument of 0 suppresses the messages and any other value lets the messag
console.

errlogInit can be used to initialize the error logging system with a larger buffer. The default is 1280 bytes. An
MAX_MESSAGE_SIZE (currently 256) bytes are allocated but never used. This is a small extra protection again
error messages.

10.4 Status Codes
EPICS defined status values provide the following features:

• Whenever possible, IOC routines return a status value: (0, non-0) means (OK, ERROR).

• The include files for each IOC subsystem contain macros defining error status symbols and strings.

• Routines are provided for run time access of the error status symbols and strings.

• A global variableerrVerbose helps code decide if error messages should be generated.

WARNING: During the fall of 1995 a series of tech-talk messages were generated concerning EPICS status val
consensus was reached.

Whenever it makes sense, IOC routines return a long word status value encoded similar to the vxWorks erro
encoding. The most significant short word indicates the subsystem module within which the error occurred. The low
short word is a subsystem status value. In order that status values do not conflict with the vxWorks error status va
subsystem numbers are greater than 500.

A file epics/share/epicsH/errMdef.h defines each subsystem number. For example thedefine for the database
access routines is:

#define M_dbAccess (501 << 16) \
/*Database Access Routines*/

Directory ”epics/share/epicsH ” contains aninclude library for every IOC subsystem that returns standard sta
values. The status values are encoded with lines of the following format:

#define S_xxxxxxx value /*string value*/

For example:

#define S_dbAccessBadDBR (M_dbAccess|3) \
/*Invalid Database Request*/

For example, whendbGetField detects a bad database request type, it executes the statement:

return(S_dbAccessBadDBR);

The calling routine checks the return status as follows:

status = dbGetField(...);
if(status) {/* Call was not successful */ }
124 EPICS IOC Application Developer’s Guide

Chapter 10: IOC Error Logging
iocLog

for the

e written
onsult

enable/
essages

alize

be

UNIX
ed by the

enerated
vel).
ed from

un the

new
he size

se to
.

d

ated
each
10.5 iocLog
This consists of two modules: iocLogServer and iocLogClient. The client code runs on each ioc and listens
messages generated by the errlog system. It also reports the messages from vxWorks logMsg.

10.5.1 iocLogServer

This runs on a host. It receives messages for all enabled iocLogClients in the local area network. The messages ar
to a file. Epics base provides a startup file "base/src/util/rc2.logServer", which is a shell script to start the server. C
this script for details.

10.5.2 iocLogClient

This runs on each ioc. It is started by default when iocInit runs. The global variable iocLogDisable can be used to
disable the messages from being sent to the server. Setting this variable to (0,1) (enables,disables) the m
generation. If iocLogDisable is set to 1 immediately after iocCore is loaded then iocLogClient will not even initi
itself.

10.5.3 Initialize Logging

Initialize the logging system. This system traps alllogMsg calls and sends a copy to a Unix file. Note that this can
disabled by issuing the commandiocLogDisable =1 before issuingiocInit .

The following description was supplied by Jeff Hill:

It is possible to configure EPICS so that a log of IOC error messages is stored in a circular ASCII file on a PC or
workstation. Each entry in the log contains the IOC's DNS name, the date and time when the message was receiv
log server, and the text of the message generated on the IOC.

All messages generated by the EPICS functions epicsPrintf() and errMessage() are placed in the log. Messages g
by the vxWorks function logMsg() are also placed in the log (logMsg() can be safely called from interrupt le
Messages generated by printf() do not end up in the log and are instead used primarily by diagnostic functions call
the vxWorks shell.

To start a log server on a UNIX or PC workstation you must first set the following environment variables and then r
executable "iocLogServer" on your PC or UNIX workstation.

EPICS_IOC_LOG_FILE_NAME
The name and path to the log file.

EPICS_IOC_LOG_FILE_LIMIT
The maximum size in characters for the log file (after which it becomes a circular file and writes
messages over old messages at the beginning of the file). If the value is zero then there is no limit on t
of the log file.

EPICS_IOC_LOG_FILE_COMMAND
A shell command string used to obtain the log file path name during initialization and in respon
SIGHUP. The new path name will replace any path name supplied in EPICS_IOC_LOG_FILE_NAME
Thus, if EPICS_IOC_LOG_FILE_NAME is
"a/b/c.log" and EPICS_IOC_LOG_FILE_COMMAND returns "A/B" or "A/B/" the log server will be store
at "A/B/c.log"
If EPICS_IOC_LOG_FILE_COMMAND is empty then this behavior is disabled. This feature was don
to the collaboration by KECK, and it is used by them for switching to a new directory at a fixed time
day. This variable is currently used only by the UNIX version of the log server.

EPICS_IOC_LOG_PORT
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 125

Chapter 10: IOC Error Logging
iocLog

ariable
to the

V and

tectures
THE TCP/IP port used by the log server.

To configure an IOC so that its messages are placed in the log you must set the environment v
EPICS_IOC_LOG_INET to the IP address of the host that is running the log server and EPICS_IOC_LOG_PORT
TCP/IP port used by the log server.

Defaults for all of the above parameters are specified in the files $(EPICS_BASE)/config/CONFIG_SITE_EN
$(EPICS_BASE)/config/CONFIG_ENV.

In base/src/util there is a solaris script for starting the log server. This can be adapted for use on other host archi.

10.5.4 Configuring a Private Log Server

In a testing environment it is desirable to use a private log server. This can be done as follows:

• Add a putenv command to your IOC startup file. For example
ld < iocCore
putenv("EPICS_IOC_LOG_INET=xxx.xxx.xxx.xxx")

The inet address is for your host workstation.

• On you host start a version of the log server.
126 EPICS IOC Application Developer’s Guide

ite new
xisting
one.

of what
cting the
a record
to be

his set of
pecific to

routine.
e entry
ord and

files as
abase

fore
Chapter 11: Record Support

11.1 Overview
The purpose of this chapter is to describe record support in sufficient detail such that a C programmer can wr
record support modules. Before attempting to write new support modules, you should carefully study a few of the e
support modules. If an existing support module is similar to the desired module most of the work will already be d

From previous chapters, it should be clear that many things happen as a result of record processing. The details
happens are dependent on the record type. In order to allow new record types and new device types without impa
core IOC system, the concept of record support and device support has been created. For each record type,
support module exists. It is responsible for all record specific details. In order to allow a record support module
independent of device specific details, the concept of device support has been created.

A record support module consists of a standard set of routines that can be called by database access routines. T
routines implements record specific code. Each record type can define a standard set of device support routines s
that record type.

By far the most important record support routine isprocess , which dbProcess calls when it wants to process a
record. This routine is responsible for the details of record processing. In many cases it calls a device support I/O
The next section gives an overview of what must be done in order to process a record. Next is a description of th
tables that must be provided by record and device support modules. The remaining sections give example rec
device support modules and describe some global routines useful to record support modules.

The record and device support modules are the only modules that are allowed to include the record specific include
defined inbase/rec . Thus they are the only routines that access record specific fields without going through dat
access.

11.2 Overview of Record Processing
The most important record support routine isprocess . This routine determines what record processing means. Be
the record specific “process ” routine is called, the following has already been done:

• Decision to process a record.

• Check that record is not active, i.e.pact must be FALSE.

• Check that the record is not disabled.

Theprocess routine, together with its associated device support, is responsible for the following tasks:

• Set record active while it is being processed

• Perform I/O (with aid of device support)

• Check for record specific alarm conditions

• Raise database monitors

• Request processing of forward links
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 127

Chapter 11: Record Support
Record Support and Device Support Entry Tables

structures

C core

are, e.g.
normally
nd even

ord type.
A complication of record processing is that some devices are intrinsically asynchronous. It isNEVER permissible to wait
for a slow device to complete. Asynchronous records perform the following steps:

1. Initiate the I/O operation and setpact TRUE

2. Determine a method for again calling process when the operation completes

3. Return immediately without completing record processing

4. When process is called after the I/O operation complete record processing

5. Setpact FALSE and return

The examples given below show how this can be done.

11.3 Record Support and Device Support Entry Tables
Each record type has an associated set of record support routines. These routines are located via the data
defined inepics/share/epicsH/recSup.h . The concept of record support routines isolates theiocCore software
from the details of each record type. Thus new records can be defined and supported without affecting the IO
software.

Each record type also has zero or more sets of device support routines. Record types without associated hardw
calculation records, normally do not have any associated device support. Record types with associated hardware
have a device support module for each device type. The concept of device support isolates IOC core software a
record support from device specific details.

Corresponding to each record type is a set of record support routines. The set of routines is the same for every rec
These routines are located via a Record Support Entry Table (RSET), which has the following structure

struct rset { /* record support entry table */
long number; /* number of support routine */
RECSUPFUN report; /* print report */
RECSUPFUN init; /* init support */
RECSUPFUN init_record; /* init record */
RECSUPFUN process; /* process record */
RECSUPFUN special; /* special processing */
RECSUPFUN get_value; /* OBSOLETE: Just leave NULL */
RECSUPFUN cvt_dbaddr; /* cvt dbAddr */
RECSUPFUN get_array_info;
RECSUPFUN put_array_info;
RECSUPFUN get_units;
RECSUPFUN get_precision;
RECSUPFUN get_enum_str; /* get string from enum */
RECSUPFUN get_enum_strs; /* get all enum strings */
RECSUPFUN put_enum_str; /* put enum from string */
RECSUPFUN get_graphic_double;
RECSUPFUN get_control_double;
RECSUPFUN get_alarm_double;

};

Each record support module must define its RSET. The external name must be of the form:

<record_type>RSET

Any routines not needed for the particular record type should be initialized to the valueNULL. Look at the example below
for details.
128 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Example Record Support Module

me which

sociated
a

Device support routines are located via a Device Support Entry Table (DSET), which has the following structure:

struct dset { /* device support entry table */
long number; /* number of support routines */
DEVSUPFUN report; /* print report */
DEVSUPFUN init; /* init support */
DEVSUPFUN init_record;/* init record instance*/
DEVSUPFUN get_ioint_info; /* get io interrupt info*/
/* other functions are record dependent*/

};

Each device support module must define its associated DSET. The external name must be the same as the na
appears indevSup.ascii .

Any record support module which has associated device support must also include definitions for accessing its as
device support modules. The field”dset ”, which is located indbCommon, contains the address of the DSET. It is given
value byiocInit .

11.4 Example Record Support Module
This section contains the skeleton of a record support package. The record type isxxx and the record has the following
fields in addition to thedbCommonfields:VAL, PREC, EGU, HOPR, LOPR, HIHI , LOLO, HIGH, LOW, HHSV, LLSV, HSV,
LSV, HYST, ADEL, MDEL, LALM, ALST, MLST. These fields will have the same meaning as they have for theai record.
Consult the Record Reference manual for a description.

11.4.1 Declarations
/* Create RSET - Record Support Entry Table*/
#define report NULL
#define initialize NULL
static long init_record();
static long process();
#define special NULL
#define get_value NULL
#define cvt_dbaddr NULL
#define get_array_info NULL
#define put_array_info NULL
static long get_units();
static long get_precision();
#define get_enum_str NULL
#define get_enum_strs NULL
#define put_enum_str NULL
static long get_graphic_double();
static long get_control_double();
static long get_alarm_double();

struct rset xxxRSET={
RSETNUMBER,
report,
initialize,
init_record,
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 129

Chapter 11: Record Support
Example Record Support Module

Support

is
process,
special,
get_value,
cvt_dbaddr,
get_array_info,
put_array_info,
get_units,
get_precision,
get_enum_str,
get_enum_strs,
put_enum_str,
get_graphic_double,
get_control_double,
get_alarm_double};

/* declarations for associated DSET */
typedef struct xxxdset { /* analog input dset */

long number;
DEVSUPFUN dev_report;
DEVSUPFUN init;
DEVSUPFUN init_record; /* returns: (1,0)=> (failure, success)*/
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_xxx;

}xxxdset;

/* forward declaration for internal routines*/
static void checkAlarams(xxxRecord *pxxx);
static void monitor(xxxRecord *pxxx);

The above declarations define the Record Support Entry Table (RSET), a template for the associated Device
Entry Table (DSET), and forward declarations to private routines.

The RSET must be declared with an external name ofxxxRSET. It defines the record support routines supplied for th
record type. Note that forward declarations are given for all routines supported and aNULLdeclaration for any routine not
supported.

The template for the DSET is declared for use by this module.

11.4.2 init_record
static long init_record(void *precord, int pass)
{

xxxRecord*pxxx = (xxxRecord *)precord;
xxxdset *pdset;
long status;

if(pass==0) return(0);

if((pdset = (xxxdset *)(pxxx->dset)) == NULL) {
recGblRecordError(S_dev_noDSET,pxxx,”xxx: init_record”);
return(S_dev_noDSET);

}
/* must have read_xxx function defined */
if((pdset->number < 5) || (pdset->read_xxx == NULL)) {
130 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Example Record Support Module

e

the
second
nt is a
dule

upport
ass=1).
recGblRecordError(S_dev_missingSup,pxxx,
”xxx: init_record”);

return(S_dev_missingSup);
}
if(pdset->init_record) {

if((status=(*pdset->init_record)(pxxx))) return(status);
}
return(0);

}

This routine, which is called byiocInit twice for each record of typexxx , checks to see if it has a proper set of devic
support routines and, if present, calls theinit_record entry of the DSET.

During the first call toinit_record (pass=0) only initializations relating to this record can be performed. During
second call (pass=1) initializations that may refer to other records can be performed. Note also that during the
pass, other records may refer to fields within this record. A good example of where these rules are importa
waveform record. TheVAL field of a waveform record actually refers to an array. The waveform record support mo
must allocate storage for the array. If another record has a database link referring to the waveformVAL field then the
storage must be allocated before the link is resolved. This is accomplished by having the waveform record s
allocate the array during the first pass (pass=0) and having the link reference resolved during the second pass (p

11.4.3 process
static long process(void *precord)
{

xxxRecord*pxxx = (xxxRecord *)precord;
 xxxdset *pdset = (xxxdset *)pxxx->dset;

long status;
unsigned char pact=pxxx->pact;

if((pdset==NULL) || (pdset->read_xxx==NULL)) {
/* leave pact true so that dbProcess doesnt call again*/
pxxx->pact=TRUE;
recGblRecordError(S_dev_missingSup,pxxx,”read_xxx”);
return(S_dev_missingSup);

}

/* pact must not be set true until read_xxx completes*/
status=(*pdset->read_xxx)(pxxx); /* read the new value */
 /* return if beginning of asynch processing*/
if(!pact && pxxx->pact) return(0);
pxxx->pact = TRUE;
recGblGetTimeStamp(pxxx);

/* check for alarms */
alarm(pxxx);
/* check event list */
monitor(pxxx);
/* process the forward scan link record */
recGblFwdLink(pxxx);

pxxx->pact=FALSE;
return(status);
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 131

Chapter 11: Record Support
Example Record Support Module

lled by
ly means.

must be
}

The record processing routines are the heart of the IOC software. The record specific process routine is ca
dbProcess whenever it decides that a record should be processed. Process decides what record processing real
The above is a good example of what should be done. In addition to being called bydbProcess the process routine may
also be called by asynchronous record completion routines.

The above model supports both synchronous and asynchronous device support routines. For example, ifread_xxx is an
asynchronous routine, the following sequence of events will occur:

• process is called withpact FALSE

• read_xxx is called. Sincepact is FALSE it starts I/O, arranges callback, and setspact TRUE

• read_xxx returns

• becausepact went fromFALSE to TRUE process just returns

• Any new call todbProcess is ignored because it findspact TRUE

• Sometime later the callback occurs andprocess is called again.

• read_xxx is called. Sincepact is TRUE it knows that it is a completion request.

• read_xxx returns

• process completes record processing

• pact is setFALSE

• process returns

At this point the record has been completely processed. The next timeprocess is called everything starts all over from
the beginning.

11.4.4 Miscellaneous Utility Routines
static long get_units(DBADDR *paddr, char *units)
{

xxxRecord *pxxx=(xxxRecord *)paddr->precord;

strncpy(units,pxxx->egu,sizeof(pxxx->egu));
return(0);

}

static long get_graphic_double(DBADDR *paddr,
struct dbr_grDouble *pgd)

{
xxxRecord *pxxx=(xxxRecord *)paddr->precord;
int fieldIndex = dbGetFieldIndex(paddr);

if(fieldIndex == xxxRecordVAL) {
pgd->upper_disp_limit = pxxx->hopr;
pgd->lower_disp_limit = pxxx->lopr;

} else recGblGetGraphicDouble(paddr,pgd);
return(0);

}
/* similar routines would be provided for */
/* get_control_double and get_alarm_double*/

These are a few examples of various routines supplied by a typical record support package. The functions that
performed by the remaining routines are described in the next section.
132 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Example Record Support Module
11.4.5 Alarm Processing
static void checkAlarms(xxxRecord *pxxx)
{

double val;
float hyst,lalm,hihi,high,low,lolo;
unsigned short hhsv,llsv,hsv,lsv;

if(pxxx->udf == TRUE){
recGblSetSevr(pxxx,UDF_ALARM,VALID_ALARM);
return;

}

hihi=pxxx->hihi; lolo=pxxx->lolo;
high=pxxx->high; low=pxxx->low;
hhsv=pxxx->hhsv; llsv=pxxx->llsv;
hsv=pxxx->hsv; lsv=pxxx->lsv;
val=pxxx->val; hyst=pxxx->hyst; lalm=pxxx->lalm;

/* alarm condition hihi */
if (hhsv && (val >= hihi
|| ((lalm==hihi) && (val >= hihi-hyst)))) {

if(recGblSetSevr(pxxx,HIHI_ALARM,pxxx->hhsv)
 pxxx->lalm = hihi;

return;
}
/* alarm condition lolo */
if (llsv && (val <= lolo
|| ((lalm==lolo) && (val <= lolo+hyst)))) {

if(recGblSetSevr(pxxx,LOLO_ALARM,pxxx->llsv))
pxxx->lalm = lolo;

return;
}
/* alarm condition high */
if (hsv && (val >= high
|| ((lalm==high) && (val >= high-hyst)))) {

if(recGblSetSevr(pxxx,HIGH_ALARM,pxxx->hsv))
pxxx->lalm = high;

return;
}
/* alarm condition low */
if (lsv && (val <= low
|| (lalm==low) && (val <= low+hyst)))) {

if(recGblSetSevr(pxxx,LOW_ALARM,pxxx->lsv))
pxxx->lalm = low;

return;
}
/*we get here only if val is out of alarm by at least hyst*/
pxxx->lalm=val;
return;

}

EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 133

Chapter 11: Record Support
Example Record Support Module

be very
e alarm

in the
rs the

code also
ntial that

ll is
This is a typical set of code for checking alarms conditions for an analog type record. The actual set of code can
record specific. Note also that other parts of the system can raise alarms. The algorithm is to always maximiz
severity, i.e. the highest severity outstanding alarm will be reported.

The above algorithm also honors a hysteresis factor for the alarm. This is to prevent alarm storms from occurring
event that the current value is very near an alarm limit and noise makes it continually cross the limit. It hono
hysteresis only when the value is going to a lower alarm severity.

11.4.6 Raising Monitors
static void monitor(xxxRecord *pxxx)
{

unsigned short monitor_mask;
float delta;

monitor_mask = recGblResetAlarms(pxxx);
/* check for value change */
delta = pxxx->mlst - pxxx->val;
if(delta<0.0) delta = -delta;
if (delta > pxxx->mdel) {

/* post events for value change */
monitor_mask |= DBE_VALUE;
/* update last value monitored */
pxxx->mlst = pxxx->val;

}
/* check for archive change */
delta = pxxx->alst - pxxx->val;
if(delta<0.0) delta = 0.0;
if (delta > pxxx->adel) {

/* post events on value field for archive change */
monitor_mask |= DBE_LOG;
/* update last archive value monitored */
pxxx->alst = pxxx->val;

}
/* send out monitors connected to the value field */
if (monitor_mask){

db_post_events(pxxx,&pxxx->val,monitor_mask);
}
return;

}

All record types should callrecGblResetAlarms as shown. Note thatnsta andnsev will have the value 0 after this
routine completes. This is necessary to ensure that alarm checking starts fresh after processing completes. The
takes care of raising alarm monitors when a record changes from an alarm state to the no alarm state. It is esse
record support routines follow the above model or else alarm processing will not follow the rules.

Analog type records should also provide monitor and archive hysteresis fields as shown by this example.

db_post_events results in channel access issuing monitors for clients attached to the record and field. The ca

int db_post_events(void *precord, void *pfield,
 unsigned int monitor_mask)

where:
134 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Record Support Routines

must be

need

tine. It
precord - The address of the record
pfield - The address of the field
monitor_mask - A bit mask that can be any combinations of the following:

DBE_ALARM - A change of alarm state has occured. This is set byrecGblResetAlarms .
DBE_LOG - Archive change of state.
DBE_VAL - Value change of state

IMPORTANT : The record support module is responsible for callingdb_post_event for any fields that change as a
result of record processing. Also it shouldNOT call db_post_event for fields that do not change.

11.5 Record Support Routines
This section describes the routines defined in the RSET. Any routine that does not apply to a specific record type
declaredNULL.

11.5.1 Generate Report of Each Field in Record
report(void *precord); /* addr of record*/

This routine is not used by most record types. Any action is record type specific.

11.5.2 Initialize Record Processing
initialize(void);

This routine is called once at IOC initialization time. Any action is record type specific. Most record types do not
this routine.

11.5.3 Initialize Specific Record
init_record(

void *precord, /* addr of record*/
int pass);

iocInit calls this routine twice (pass=0 and pass=1) for each database record of the type handled by this rou
must perform the following functions:

• Check and/or issue initialization calls for the associated device support routines.

• Perform any record type specific initialization.

• During the first pass it can only perform initializations that affect the record referenced by precord.

• During the second pass it can perform initializations that affect other records.

11.5.4 Process Record
process(void *precord); /* addr of record*/

This routine must follow the guidelines specified previously.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 135

Chapter 11: Record Support
Record Support Routines

dr calls

et field
11.5.5 Special Processing
special(

struct dbAddr *paddr,
int after);/*(FALSE,TRUE)=>(Before,After)Processing*/

This routine implements the record type specific special processing for the field referred to bydbAddr . Note that it is
called twice. Once before any changes are made to the associated field and once after. Filespecial.h defines special
types. This routine is only called for user special fields, i.e. fields withSPC_xxx >= 100. A field is declared special in the
ASCII record definition file. New values should not by added tospecial.h , instead useSPC_MOD.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.

11.5.6 Get Value

This routine is no longer used. It should be left as a NULL procedure in the record support entry table.

11.5.7 Convert dbAddr Definitions
cvt_dbaddr(struct dbAddr *paddr);

This routine is called bydbNameToAddr if the field has special set equal toSPC_DBADDR. A typical use is when a field
refers to an array. This routine can change any combination of thedbAddr fields: no_elements , field_type ,
field_size , special, and dbr_type . For example if theVAL field of a waveform record is passed to
dbNameToAddr, cvt_dbaddr would changedbAddr so that it refers to the actual array rather thenVAL.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.

NOTES:

• Channel access calls db_name_to_addr, which is part of old database access. Db_name_to_ad
dbNameToAddr. This is done when a client connects to the record.

• no_elements must be set to the maximum number of elements that will ever be stored in the array.

11.5.8 Get Array Information
get_array_info(

struct dbAddr *paddr,
long *no_elements,
long *offset);

This routine returns the current number of elements and the offset of the first value of the specified array. The offs
is meaningful if the array is actually a circular buffer.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.

11.5.9 Put Array Information
put_array_info(

struct dbAddr *paddr,
long nNew);

This routine is called after new values have been placed in the specified array.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.
136 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Record Support Routines

ASCII

ted with
ed.
11.5.10 Get Units
get_units(

struct dbAddr *paddr,
char *punits);

This routine sets units equal to the engineering units for the field.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.

11.5.11 Get Precision
get_precision(

struct dbAddr *paddr,
long *precision);

This routine gets the precision, i.e. number of decimal places, which should be used to convert the field value to an
string.recGblGetPrec should be called for fields not directly related to the value field.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.

11.5.12 Get Enumerated String
get_enum_str(

struct dbAddr *paddr,
char *p);

This routine sets*p equal to the ASCII string for the field value. The field must have typeDBF_ENUM.

Look at the code for thebi or mbbi records for examples.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.

11.5.13 Get Strings for Enumerated Field
get_enum_strs(

struct dbAddr *paddr,
struct dbr_enumStrs *p);

This routine gives values to all fields of structuredbr_enumStrs .

Look at the code for thebi or mbbi records for examples.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.

11.5.14 Put Enumerated String
put_enum_str(

struct dbAddr *paddr,
char *p);

Given an ASCII string, this routine updates the database field. It compares the string with the string values associa
each enumerated value and if it finds a match sets the database field equal to the index of the string which match

Look at the code for thebi or mbbi records for examples.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 137

Chapter 11: Record Support
Global Record Support Routines

specific

ize the
is found
ly if the
lement

ssed.
s are

port
11.5.15 Get Graphic Double Information
get_graphic_double(

struct dbAddr *paddr,
struct dbr_grDouble *p); /* addr of return info*/

This routine fills in the graphics related fields of structuredbr_grDouble . recGblGetGraphicDouble should be
called for fields not directly related to the value field.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.

11.5.16 Get Control Double Information
get_control_double(

struct dbAddr *paddr,
struct dbr_ctrlDouble *p); /* addr of return info*/

This routine gives values to all fields of structuredbr_ctrlDouble . recGblGetControlDouble should be called
for fields not directly related to the value field.

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.

11.5.17 Get Alarm Double Information
get_alarm_double(

struct dbAddr *paddr,
struct dbr_alDouble *p); /* addr of return info*/

This routine gives values to all fields of structuredbr_alDouble .

The database access routine,dbGetFieldIndex can be used to determine which field is being modified.

11.6 Global Record Support Routines
A number of global record support routines are available. These routines are intended for use by the record
processing routines but can be called by any routine that wishes to use their services.

The name of each of these routines begins with ”recGbl ”.

11.6.1 Alarm Status and Severity

Alarms may be raised in many different places during the course of record processing. The algorithm is to maxim
alarm severity, i.e. the highest severity outstanding alarm is raised. If more than one alarm of the same severity
then the first one is reported. This means that whenever a code fragment wants to raise an alarm, it does so on
alarm severity it will declare is greater then that already existing. Four fields (in database common) are used to imp
alarms:sevr , stat , nsev , andnsta . The first two are the status and severity after the record is completely proce
The last two fields (nsta andnsev) are the status and severity values to set during record processing. Two routine
used for handling alarms. Whenever a routine wants to raise an alarm it callsrecGblSetSevr . This routine will only
changensta andnsev if it will result in the alarm severity being increased. At the end of processing, the record sup
module must callrecGblResetAlarms . This routine setsstat =nsta , sevr =nsev , nsta =0, andnsev =0. If stat
or sevr has changed value since the last call it callsdb_post_event for stat and sevr and returns a value of
138 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Global Record Support Routines

ow these

d

tatus

tatus
DBE_ALARM. If no change occured it returns 0. Thus after callingrecGblResetAlarms everything is ready for raising
alarms the next time the record is processed. The example record support module presented above shows h
macros are used.

recGblSetSevr(
void *precord,
short nsta,
short nsevr);

Returns: (TRUE, FALSE) if (did, did not) changensta andnsev .

unsigned short recGblResetAlarms(void *precord);

Returns: Initial value formonitor_mask

11.6.2 Alarm Acknowledgment

Database common contains two additional alarm related fields:acks (Highest severity unacknowledged alarm) an
ackt (does transient alarm need to be acknowledged). These field are handled byiocCore andrecGblResetAlarms
and are not the responsibility of record support. These fields are intended for use by the alarm handler.

11.6.3 Generate Error: Process Variable Name, Caller, Message

SUGGESTION: useepicsPrintf instead of this for new code.

recGblDbaddrError(
long status,
struct dbAddr *paddr,
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following information: S
information, process variable name, calling routine.

11.6.4 Generate Error: Status String, Record Name, Caller
SUGGESTION: useepicsPrintf instead of this for new code.

recGblRecordError(
long status,
void *precord, /* addr of record */
char *pcaller_name); /* calling routine name */

This routine interfaces with the system wide error handling system to display the following information: S
information, record name, calling routine.

11.6.5 Generate Error: Record Name, Caller, Record Support Message
SUGGESTION: useepicsPrintf instead of this for new code.

recGblRecsupError(
long status,
struct dbAddr *paddr,
char *pcaller_name, /* calling routine name */
char *psupport_name); /* support routine name*/
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 139

Chapter 11: Record Support
Global Record Support Routines

tatus

t it

it

it

n’t
This routine interfaces with the system wide error handling system to display the following information: S
information, record name, calling routine, record support entry name.

11.6.6 Get Graphics Double
recGblGetGraphicDouble(

struct dbAddr *paddr,
struct dbr_grDouble *pgd);

This routine can be used by theget_graphic_double record support routine to obtain graphics values for fields tha
doesn’t know how to set.

11.6.7 Get Control Double
recGblGetControlDouble(

struct dbAddr *paddr,
struct dbr_ctrlDouble *pcd);

This routine can be used by theget_control_double record support routine to obtain control values for fields that
doesn’t know how to set.

11.6.8 Get Alarm Double
recGblGetAlarmDouble(

struct dbAddr *paddr,
struct dbr_alDouble *pcd);

This routine can be used by theget_alarm_double record support routine to obtain control values for fields that
doesn’t know how to set.

11.6.9 Get Precision
recGblGetPrec(

struct dbAddr *paddr,
long *pprecision);

This routine can be used by theget_precision record support routine to obtain the precision for fields that it does
know how to set the precision.

11.6.10 Get Time Stamp
recGblGetTimeStamp(void *precord)

This routine gets the current time stamp and puts it in the record

11.6.11 Forward link
recGblFwdLink(

void *precord);

This routine can be used by process to request processing of forward links.
140 EPICS IOC Application Developer’s Guide

Chapter 11: Record Support
Global Record Support Routines

e

11.6.12 Initialize Constant Link
 int recGblInitConstantLink(

struct link *plink,
short dbfType,
void *pdest);

Initialize a constant link. This routine is usually called byinit_record (or by associated device support) to initializ
the field associated with a constant link. It returns(FALSE, TRUE) if it (did not, did) modify the destination.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 141

Chapter 11: Record Support
Global Record Support Routines
142 EPICS IOC Application Developer’s Guide

les. The
can be

r how
ardware

s

s device
chronous
amounts
support

propriate.
e delay is
igner why

r can be
ue. For
hases,
Chapter 12: Device Support

12.1 Overview
In addition to a record support module, each record type can have an arbitrary number of device support modu
purpose of device support is to hide hardware specific details from record processing routines. Thus support
developed for a new device without changing the record support routines.

A device support routine has knowledge of the record definition. It also knows how to talk to the hardware directly o
to call a device driver which interfaces to the hardware. Thus device support routines are the interface between h
specific fields in a database record and device drivers or the hardware itself.

Database common contains two device related fields:

• dtyp: Device Type.

• dset: Address of Device Support Entry Table.

The fielddtyp contains the index of the menu choice as defined by the device ASCII definitions.iocInit uses this field
and the device support structures defined indevSup.h to initialize the fielddset . Thus record support can locate it
associated device support via thedset field.

Device support modules can be divided into two basic classes: synchronous and asynchronous. Synchronou
support is used for hardware that can be accessed without delays for I/O. Many register based devices are syn
devices. Other devices, for example all GPIB devices, can only be accessed via I/O requests that may take large
of time to complete. Such devices must have associated asynchronous device support. Asynchronous device
makes it more difficult to create databases that have linked records.

If a device can be accessed with a delay of less then a few microseconds then synchronous device support is ap
If a device causes delays of greater than 100 microseconds then asynchronous device support is appropriate. If th
between these values your guess about what to do is as good as mine. Perhaps you should ask the hardware des
such a device was created.

If a device takes a long time to accept requests there is another option than asynchronous device support. A drive
created that periodically polls all its attached input devices. The device support just returns the latest polled val
outputs, device support just notifies the driver that a new value must be written. the driver, during one of its polling p
writes the new value. The EPICS Allen Bradley device/driver support is a good example.

12.2 Example Synchronous Device Support Module
/* Create the dset for devAiSoft */
long init_record();
long read_ai();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 143

Chapter 12: Device Support
Example Synchronous Device Support Module
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

}devAiSoft={
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

static long init_record(void *precord)
{

aiRecord *pai = (aiRecord *)precord;
long status;

/* ai.inp must be a CONSTANT, PV_LINK, DB_LINK or CA_LINK*/
switch (pai->inp.type) {

case (CONSTANT) :
recGblInitConstantLink(&pai->inp,

DBF_DOUBLE,&pai->val);
break;

case (PV_LINK) :
case (DB_LINK) :
case (CA_LINK) :

break;
default :

recGblRecordError(S_db_badField, (void *)pai,
”devAiSoft (init_record) Illegal INP field”);

return(S_db_badField);
}
/* Make sure record processing routine does not perform any conversion*/
pai->linr=0;
return(0);

}

static long read_ai(void *precord)
{

aiRecord*pai =(aiRecord *)precord;
long status;

status=dbGetGetLink(&(pai->inp.value.db_link),
(void *)pai,DBR_DOUBLE,&(pai->val),0,1);

if(status) return(status);
return(2); /*don’t convert*/

}

144 EPICS IOC Application Developer’s Guide

Chapter 12: Device Support
Example Asynchronous Device Support Module

a

e

rations:

f
r

e

alue of
is is a

.

The example isdevAiSoft , which supports soft analog inputs. TheINP field can be a constant or a database link or
channel access link. Only two routines are provided (the rest are declaredNULL). Theinit_record routine first checks
that the link type is valid. If the link is a constant it initializesVAL If the link is a Process Variable link it calls
dbCaGetLink to turn it into a Channel Access link. Theread_ai routine obtains an input value if the link is a databas
or Channel Access link, otherwise it doesn’t have to do anything.

12.3 Example Asynchronous Device Support Module
This example shows how to write an asynchronous device support routine. It does the following sequence of ope

1. When first calledpact is FALSE. It arranges for a callback (myCallback) routine to be called after a number o
seconds specified by theVAL field. callbackRequest is an EPICS supplied routine. The watchdog time
routines are supplied by vxWorks.

2. It prints a message stating that processing has started, setspact TRUE , and returns. The record processing routin
returns without completing processing.

3. When the specified time elapsesmyCallback is called. It locks the record, callsprocess , and unlocks the
record. It calls the process entry of the record support module, which it locates via therset field in dbCommon,
directly rather thandbProcess . dbProcess would not callprocess becausepact is TRUE.

4. Whenprocess executes, it again callsread_ai . This timepact is TRUE.

5. read_ai prints a message stating that record processing is complete and returns a status of 2. Normally a v
0 would be returned. The value 2 tells the record support routine not to attempt any conversions. Th
convention (a bad convention!) used by the analog input record.

6. Whenread_ai returns the record processing routine completes record processing.

At this point the record has been completely processed. The next time process is called everything starts all over

/* Create the dset for devAiTestAsyn */
long init_record();
long read_ai();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiTestAsyn={
6,
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL};

/* control block for callback*/
typedef struct myCallback {

CALLBACK callback;
sruct dbCommon *precord;
WDOG_ID wd_id;
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 145

Chapter 12: Device Support
Example Asynchronous Device Support Module
}myCallback;

static void myCallback(CALLBACK *pcallback)
{
 dbCommon *precord;
 struct rset*prset;

callbackGetUser(precord,pcallback);
prset = (struct rset *)precord->rset;
dbScanLock(precord);
*(prset->process)(precord);
dbScanUnlock(precord);

}

static long init_record(void *precord)
{
 aiRecord *pai = (aiRecord *)precord;
 myCallback *pcallback;

 /* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :

pcallback = (myCallback *)(calloc(1,sizeof(myCallback)));
pai->dpvt = (void *)pcallback;
callbackSetCallback(myCallback, &pcallback->callback);
callbackSetUser(precord, &pcallback->callback);
pcallback->precord = (struct dbCommon *)pai;
pcallback->wd_id = wdCreate();
pai->val = pai->inp.value.value;
pai->udf = FALSE;
break;

default :
recGblRecordError(S_db_badField, (void *)pai,

”devAiTestAsyn (init_record) Illegal INP field”);
return(S_db_badField);

}
return(0);

}

static long read_ai(void *precord)
{

aiRecord *pai = (aiRecord *)precord;;
struct callback *pcallback=(struct callback *)(pai->dpvt);
int wait_time;

/* ai.inp must be a CONSTANT*/
switch (pai->inp.type) {
case (CONSTANT) :

if(pai->pact) {
printf(”%s Completed\n”,pai->name);
return(2); /* don‘t convert*/

} else {
146 EPICS IOC Application Developer’s Guide

Chapter 12: Device Support
Device Support Routines

must be

)
driver

nce
e started.
wait_time = (int)(pai->val * vxTicksPerSecond);
if(wait_time<=0) return(0);
callbackSetPriority(pai->prio,&pcallback->callback);
printf(”%s Starting asynchronous processing\n”,

pai->name);
wdStart(pcallback->wd_id,wait_time,

(FUNCPTR)callbackRequest,
(int)&pcallback->callback);

pai->pact = TRUE;
return(0);

}
default :

if(recGblSetSevr(pai,SOFT_ALARM,VALID_ALARM)) {
if(pai->stat!=SOFT_ALARM) {

recGblRecordError(S_db_badField, (void *)pai,
”devAiTestAsyn (read_ai) Illegal INP field”);

}
}

}
return(0);

}

12.4 Device Support Routines
This section describes the routines defined in the DSET. Any routine that does not apply to a specific record type
declaredNULL.

12.4.1 Generate Device Report
report(

int interest);

This routine is responsible for reporting all I/O cards it has found. Ifinterest is (0,1) then generate a (short, long
report. If a device support module is using a driver, it normally does not have to implement this routine because the
generates the report.

12.4.2 Initialize Record Processing
init(

int after);

This routine is called twice at IOC initialization time. Any action is device specific. This routine is called twice: o
before any database records are initialized and once after all records are initialized but before the scan tasks ar
after has the value (0,1) (before, after) record initialization.

12.4.3 Initialize Specific Record
init_record(

void *precord); /* addr of record*/
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 147

Chapter 12: Device Support
Device Support Routines

d is

ument
fferent
The record supportinit_record routine calls this routine.

12.4.4 Get I/O Interrupt Information
get_ioint_info(

int cmd,
struct dbCommon *precord,
IOSCANPVT *ppvt);

This is called by the I/O interrupt scan task. Ifcmd is (0,1) then this routine is being called when the associated recor
being (placed in, taken out of) an I/O scan list. See the chapter on scanning for details.

It should be noted that a previous type of I/O event scanning is still supported. It is not described in this doc
because, hopefully, it will go away in the near future. When it calls this routine the arguments have completely di
meanings.

12.4.5 Other Device Support Routines

All other device support routines are record type specific.
148 EPICS IOC Application Developer’s Guide

device
EPICS

rder to
er was

don’t I?

subnet.

Allen

ed by

top of
e next

outines
ecords.
ley driver
binary

vice to
t is that
vided

entry
Chapter 13: Driver Support

13.1 Overview
It is not necessary to create a driver support module in order to interface EPICS to hardware. For simple hardware
support is sufficient. At the present time most hardware support has both. The reason for this is historical. Before
there was GTACS. During the change from GTACS to EPICS, record support was changed drastically. In o
preserve all existing hardware support the GTACS drivers were used without change. The device support lay
created just to shield the existing drivers form the record support changes.

Since EPICS now has both device and driver support the question arises: When do I need driver support and when
Lets give a few reasons why drivers should be created.

• The hardware is actually a subnet, e.g. GPIB. In this case a driver should be provided for accessing the
There is no reason to make the driver aware of EPICS except possibly for issuing error messages.

• The hardware is complicated. In this case supplying driver support helps modularized the software. The
Bradley driver, which is also an example of supporting a subnet, is a good example.

• An existing driver, maintained by others, is available. I don’t know of any examples.

• The driver should be general purpose, i.e. not tied to EPICS. The CAMAC driver is a good example. It is us
other systems, such as CODA.

The only thing needed to interface a driver to EPICS is to provide a driver support module, which can be layered on
an existing driver, and provide a database definition for the driver. The driver support module is described in th
section. The database definition is described in chapter “Database Definition”.

13.2 Device Drivers
Device drivers are modules that interface directly with the hardware. They are provided to isolate device support r
from details of how to interface to the hardware. Device drivers have no knowledge of the internals of database r
Thus there is no necessary correspondence between record types and device drivers. For example the Allen Brad
provides support for many different types of signals including analog inputs, analog outputs, binary inputs, and
outputs.

In general only device support routines know how to call device drivers. Since device support varies widely from de
device, the set of routines provided by a device driver is almost completely driver dependent. The only requiremen
routinesreport andinit must be provided. Device support routines must, of course, know what routines are pro
by a driver.

File drvSup.h describes the format of a driver support entry table. The driver support module must supply a driver
table. An example definition is:

LOCAL long report();
LOCAL long init();
struct {

 long number;
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 149

Chapter 13: Driver Support
Device Drivers

the
ay. An

es not
ware

time
is
 DRVSUPFUN report;
 DRVSUPFUN init;

} drvAb={
 2,
 report,
 init

};

The above example is for the Allen Bradley driver. It has an associated ascii definition of:

driver(drvAb)

Thus it is seen that the driver support module should supply two EPICS callable routines:int andreport .

13.2.0.1 init

This routine, which has no arguments, is called byiocInit . The driver is expected to look for and initialize the
hardware it supports. As an example the init routine for Allen Bradley is:

LOCAL long init()
{

 return(ab_driver_init());
}

13.2.0.2 report

The report routine is called by thedbior , an IOC test routine. It is responsible for producing a report describing
hardware it found at init time. It is passed one argument, level, which is a hint about how much information to displ
example, taken from Allen Bradley, is:

LOCAL long report(int level)
{

 return(ab_io_report(level));
}

Guidelines for level are as follows:

Level=0 Display a one line summary for each device
Level=1 Display more information
Level=2 Display a lot of information. It is even permissible to

prompt for what is wanted.

13.2.0.3 Hardware Configuration

Hardware configuration includes the following:

• VME/VXI address space

• VME Interrupt Vectors and levels

• Device Specific Information

The information contained in hardware links supplies some but not all configuration information. In particular it do
define the VME/VXI addresses and interrupt vectors. This additional information is what is meant by hard
configuration in this chapter.

The problem of defining hardware configuration information is an unsolved problem for EPICS. At one
configuration information was defined inmodule_types .h Many existing device/driver support modules still uses th
method. It shouldNOT be used for any new support for the following reasons:

• There is no way to manage this file for the entire EPICS community.
150 EPICS IOC Application Developer’s Guide

Chapter 13: Driver Support
Device Drivers

es the
odules
s

ed:

Allow
can be
• It does not allow arbitrary configuration information.

• It is hard for users to determine what the configuration information is.

The fact that it is now easy to include ASCII definitions for only the device/driver support used in each IOC mak
configuration problem much more manageable than previously. Previously if you wanted to support a new VME m
it was necessary to pick addresses that nothing inmodule_types .h was using. Now you only have to check module
you are actually using.

Since there are no EPICS defined rules for hardware configuration, the following minimal guidelines should be us

• Never use #define to specify things like VME addresses. Instead use variables and assign default values.
the default values to be changed before iocInit is executed. The best way is to supply a global routine that
invoked from the IOC startup file. Note that all arguments to such routines should be one of the following:

int
char *
double

• Call the routines described in chapter “Device Support Library” whenever possible.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 151

Chapter 13: Driver Support
Device Drivers
152 EPICS IOC Application Developer’s Guide

rovides
cess can be
access is

s
use it can

read via
n be

interface.
a file

r access

. Two
cessed

rm:
Chapter 14: Static Database Access

14.1 Overview
An IOC database is created on a Unix system via a Database Configuration Tool and stored in a Unix file. EPICS p
two sets of database access routines: Static Database Access and Runtime Database Access. Static database ac
used on Unix or IOC database files. Runtime database requires an initialized IOC databases. Static database
described in this chapter and runtime database access in the next chapter.

Static database access provides a simplified interface to a database, i.e. much of the complexity is hidden.DBF_MENUand
DBF_DEVICEfields are accessed via a common type calledDCT_MENU. A set of routines are provided to simplify acces
to link fields. All fields can be accessed as character strings. This interface is called static database access beca
be used to access an uninitialized, as well as an initialized database.

Before accessing database records, the files describing menus, record types, and devices must be
dbReadDatabase or dbReadDatabaseFP . These routines, which are also used to load record instances, ca
called multiple times.

Database Configuration Tools (DCTs) should manipulate an EPICS database only via the static database access
An IOC database is created on a Unix system via a database configuration tool and stored in a Unix file with
extension of ”.db”. Three routines (dbReadDatabase, dbReadDatabaseFP anddbWriteRecord) access a Unix
database file. These routines read/write a database file to/from a memory resident EPICS database. All othe
routines manipulate the memory resident database.

An include file dbStaticLib.h contains all the definitions needed to use the static database access library
structures (DBBASEandDBENTRY) are used to access a database. The fields in these structures should not be ac
directly. They are used by the static database access library to keep state information for the caller.

14.2 Definitions

14.2.1 DBBASE

Multiple memory resident databases can be accessed simultaneously. The user must provide definitions in the fo

DBBASE *pdbbase;

14.2.2 DBENTRY

A typical declaration for a database entry structure is:

DBENTRY *pdbentry;
pdbentry=dbAllocEntry(pdbbase);

Most static access to a database is via aDBENTRY structure. As manyDBENTRYs as desired can be allocated.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 153

Chapter 14: Static Database Access
Allocating and Freeing DBBASE

cess

e set to

field types
fields are

g menu

on

an also be

call
The user should NEVER access the fields ofDBENTRYdirectly. They are meant to be used by the static database ac
library.

Most static access routines accept an argument which contains the address of aDBENTRY. Each routine uses this structure
to locate the information it needs and gives values to as many fields in this structure as possible. All other fields ar
NULL.

14.2.3 Field Types

Each database field has a type as defined in the next chapter. For static database access a new and simpler set of
are defined. In addition, at runtime, a database field can be an array. With static database access, however, all
scalars. Static database access field types are called DCT field types.

The DCT field types are:

• DCT_STRING: Character string.

• DCT_INTEGER : Integer value

• DCT_REAL : Floating point number

• DCT_MENU : A set of choice strings

• DCT_MENUFORM : A set of choice strings with associated form.

• DCT_INLINK : Input Link

• DCT_OUTLINK : Output Link

• DCT_FWDLINK : Forward Link

• DCT_NOACCESS: A private field for use by record access routines

A DCT_STRINGfield contains the address of aNULL terminated string. The field typesDCT_INTEGERandDCT_REAL
are used for numeric fields. A field that has any of these types can be accessed via thedbGetString , dbPutString ,
dbVerify , anddbGetRange routines.

The field typeDCT_MENUhas an associated set of strings defining the choices. Routines are available for accessin
fields. A menu field can also be accessed via thedbGetString , dbPutString , dbVerify , and dbGetRange
routines.

The field typeDCT_MENUFORMis like DCT_MENUbut in addition the field has an associated link field. The informati
for the link field can be entered via a set of form manipulation fields.

DCT_INLINK (input),DCT_OUTLINK(output), andDCT_FWDLINK(forward) specify that the field is a link, which has
an associated set of static access routines described in the next subsection. A field that has any of these types c
accessed via thedbGetString , dbPutString , dbVerify , anddbGetRange routines.

14.3 Allocating and Freeing DBBASE

14.3.1 dbAllocBase
DBBASE *dbAllocBase(void);

This routine allocates and initializes a DBBASE structure. It does not return if it is unable to allocate storage.

dbAllocBase allocates and initializes a DBBASE structure. Normally an application does not need to
dbAllocBase because a call todbReadDatabase or dbReadDatabaseFP automatically calls this routine if
pdbbase is null. Thus the user only has to supply code like the following:
154 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
DBENTRY Routines

different
DBBASE *pdbbase=0;
...
status = dbReadDatabase(&pdbbase,"sample.db",

"<path>","<macro substitutions>");

The static database access library allows applications to work with multiple databases, each referenced via a
(DBBASE *) pointer. Such applications may find it necessary to calldbAllocBase directly.

dbAllocBase does not return if it is unable to allocate storage.

14.3.2 dbFreeBase
void dbFreeBase(DBBASE *pdbbase);

dbFreeBase frees the entire database reference bypdbbase including the DBBASE structure itself.

14.4 DBENTRY Routines

14.4.1 Alloc/Free DBENTRY
DBENTRY *dbAllocEntry(DBBASE *pdbbase);
void dbFreeEntry(DBENTRY *pdbentry);

These routines allocate, initialize, and freeDBENTRYstructures. The user can allocate and freeDBENTRYstructures as
necessary. EachDBENTRY is, however, tied to a particular database.

dbAllocEntry anddbFreeEntry act as a pair, i.e. the user callsdbAllocEntry to create a new DBENTRY and
callsdbFreeEntry when done.

14.4.2 dbInitEntry dbFinishEntry
void dbInitEntry(DBBASE *pdbbase,DBENTRY *pdbentry);
void dbFinishEntry(DBENTRY *pdbentry);

The routinesdbInitEntry anddbFinishEntry are provided in case the user wants to allocate aDBENTRYstructure
on the stack. Note that the caller MUST calldbFinishEntry before returning from the routine that calls
dbInitEntry . An example of how to use these routines is:

int xxx(DBBASE *pdbbase)
{

DBENTRY dbentry;
DBENTRY *pdbentry = &dbentry;
...
dbInitEntry(pdbbase,pdbentry);
...
dbFinishEntry(pdbentry);

}

14.4.3 dbCopyEntry
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 155

Chapter 14: Static Database Access
Read and Write Database

pies.

pter
s
"FILE
bed in

e are
dbCopyEntry
Contents

DBENTRY *dbCopyEntry(DBENTRY *pdbentry);
void dbCopyEntryContents(DBENTRY *pfrom,DBENTRY *pto);

The routine dbCopyEntry allocates a new entry, via a call todbAllocEntry , copies the information from the original
entry, and returns the result. The caller must free the entry, viadbFreeEntry when finished with the DBENTRY.

The routinedbCopyEntryContents copies the contents of pfrom to pto. Code should never perform structure co

14.5 Read and Write Database

14.5.1 Read Database File
long dbReadDatabase(DBBASE **ppdbbase,const char *filename,

char *path, char *substitutions);
long dbReadDatabaseFP(DBBASE **ppdbbase,FILE *fp,

char *path, char *substitutions);
long dbPath(DBBASE *pdbbase,const char *path);
long dbAddPath(DBBASE *pdbbase,const char *path);

dbReadDatabase anddbReadDatabaseFP both read a file containing database definitions as described in cha
“Database Definitions”. If *ppdbbase is NULL, dbAllocBase is automatically invoked and the return addres
assigned to *pdbbase . The only difference between the two routines is that one accepts a file name and the other a
*". Any combination of these routines can be called multiple times. Each adds definitions with the rules descri
chapter “Database Definitions”.

The routinesdbPath anddbAddPath specify paths for use by include statements in database definition files. Thes
not normally called by user code.

14.5.2 Write Database Definitons
long dbWriteMenu(DBBASE *pdbbase,char *filename,

char *menuName);
long dbWriteMenuFP(DBBASE *pdbbase,FILE *fp,char *menuName);
long dbWriteRecordType(DBBASE *pdbbase,char *filename,

char *recordTypeName);
long dbWriteRecordTypeFP(DBBASE *pdbbase,FILE *fp,

char *recordTypeName);
long dbWriteDevice(DBBASE *pdbbase,char *filename);
long dbWriteDeviceFP(DBBASE *pdbbase,FILE *fp)
long dbWriteDriver(DBBASE *pdbbase,char *filename);
long dbWriteDriverFP(DBBASE *pdbbase,FILE *fp);
long dbWriteBreaktable(DBBASE *pdbbase,

const char *filename);
long dbWriteBreaktableFP(DBBASE *pdbbase,FILE *fp);
156 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Manipulating Record Types

d

,
.
utines is:
Each of these routines writes files in the same format accepted bydbReadDatabase anddbReadDatabaseFP . Two
versions of each type are provided. The only difference is that one accepts a filename and the other a "FILE *". Thus only
one of each type has to be described.

dbWriteMenu writes the description of the specified menu or, ifmenuName is NULL, the descriptions of all menus.

dbWriteRecordType writes the description of the specified record type or, ifrecordTypeName is NULL, the
descriptions of all record types.

dbWriteDevice writes the description of all devices to stdout.

dbWriteDriver writes the description of all drivers to stdout.

14.5.3 Write Record Instances
long dbWriteRecord(DBBASE *pdbbase,char * file,

char *precordTypeName,int level);
long dbWriteRecordFP(DBBASE *pdbbase,FILE *fp,

char *precordTypeName,int level);

Each of these routines writes files in the same format accepted bydbReadDatabase anddbReadDatabaseFP . Two
versions of each type are provided. The only difference is that one accepts a filename and the other a “FILE *”. Thus only
one of each type has to be described.

dbWriteRecord writes record instances. IfprecordTypeName is NULL, then the record instances for all recor
types are written, otherwise only the records for the specified type are written.level has the following meaning:

• 0 - Write only prompt fields that are different than the default value.

• 1 - Write only the fields which are prompt fields.

• 2 - Write the values of all fields.

14.6 Manipulating Record Types

14.6.1 Get Number of Record Types
int dbGetNRecordTypes(DBENTRY *pdbentry);

This routine returns the number of record types in the database.

14.6.2 Locate Record Type
long dbFindRecordType(DBENTRY *pdbentry,

char *recordTypeName);
long dbFirstRecordType(DBENTRY *pdbentry);
long dbNextRecordType(DBENTRY *pdbentry);

dbFindRecordType locates a particular record type.dbFirstRecordType locates the first, in alphabetical order
record type. Given that DBENTRY points to a particular record type,dbNextRecordType locates the next record type
Each routine returns 0 for success and a non zero status value for failure. A typical code segment using these ro

status = dbFirstRecordType(pdbentry);
while(!status) {
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 157

Chapter 14: Static Database Access
Manipulating Field Descriptions

called

. that
ce

hat field

e field

not
/*Do something*/
status = dbNextRecordType(pdbentry)
}

14.6.3 Get Record Type Name
char *dbGetRecordTypeName(DBENTRY *pdbentry);

This routine returns the name of the record type that DBENTRY currently references. This routine should only be
after a successful call todbFindRecordType , dbFirstRecordType , or dbNextRecordType . It returns NULL if
DBENTRY does not point to a record description.

14.7 Manipulating Field Descriptions
The routines described in this section all assume that DBENTRY references a record type, i.e
dbFindRecordType , dbFirstRecordType , or dbNextRecordType has returned success or that a record instan
has been successfully located.

14.7.1 Get Number of Fields
int dbGetNFields(DBENTRY *pdbentry,int dctonly);

Returns the number of fields for the record instance that DBENTRY currently references.

14.7.2 Locate Field
long dbFirstField(DBENTRY *pdbentry,int dctonly);
long dbNextField(DBENTRY *pdbentry,int dctonly);

These routines are used to locate fields. If any of these routines returns success, then DBENTRY references t
description.

14.7.3 Get Field Type
int dbGetFieldType(DBENTRY *pdbentry);

This routine returns the integer value for a DCT field type, see Section 14.2.3 on page 154, for a description of th
types.

14.7.4 Get Field Name
char *dbGetFieldName(DBENTRY *pdbentry);

This routine returns the name of the field that DBENTRY currently references. It returns NULL if DBENTRY does
point to a field.
158 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Manipulating Record Attributes

RY

do field
lds are

ERS is

nces a
14.7.5 Get Default Value
char *dbGetDefault(DBENTRY *pdbentry);

This routine returns the default value for the field that DBENTRY currently references. It returns NULL if DBENT
does not point to a field or if the default value is NULL.

14.7.6 Get Field Prompt
char *dbGetPrompt(DBENTRY *pdbentry);
int dbGetPromptGroup(DBENTRY *pdbentry);

ThedbGetPrompt routine returns the character string prompt value, which describes the field.dbGetPromptGroup
returns the field group as described in guigroup.h.

14.8 Manipulating Record Attributes
A record attribute is a "psuedo" field definition attached to a record type. If a attribute value is assigned to a psue
name then all record instances of that record type appear to have that field with the defined value. All attribute fie
DCT_STRING fields.

Two field attributes are automatically created: RTYP and VERS. RTYP is set equal to ,the record type name. V
initialized to the value "none specified" but can be changed by record support.

14.8.1 dbPutRecord
Attribute
long dbPutRecordAttribute(DBENTRY *pdbentry,
 char *name,char*value)

This creates or modifies attributename with value .

14.8.2 dbGetRecord
Attribute
long dbGetRecordAttribute(DBENTRY *pdbentry,char *name);

14.9 Manipulating Record Instances
With the exception of dbFindRecord, each of the routines described in this section require that DBENTRY refere
valid record type, i.e. thatdbFindRecordType , dbFirstRecordType , or dbNextRecordType has been called
and returned success.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 159

Chapter 14: Static Database Access
Manipulating Record Instances

ences the

r

and
.

e
e new
14.9.1 Get Number of Records
int dbGetNRecords(DBENTRY *pdbentry);

Returns the number of record instances for the record type that DBENTRY currently references.

14.9.2 Locate Record
long dbFindRecord(DBENTRY *pdbentry,char *precordName);
long dbFirstRecord(DBENTRY *pdbentry);
long dbNextRecord(DBENTRY *pdbentry);

These routines are used to locate record instances. If any of these routines returns success, then DBENTRY refer
record.dbFindRecord can be called without DBENTRY referencing a valid record type.dbFirstRecord only
works if DBENTRY references a record type. ThedbDumpRecords example given at the beginning of this chapte
shows how these routines can be used.

dbFindRecord also callsdbFindField if the record name includes a field name, i.e. it ends in “.XXX”. The routine
dbFoundField returns (TRUE, FALSE) if the field (was, was not) found. If it was not found, thendbFindField must
be called before individual fields can be used.

14.9.3 Get Record Name
char *dbGetRecordName(DBENTRY *pdbentry);

This routine only works properly if called afterdbFindRecord , dbFirstRecord , or dbNextRecord has returned
success.

14.9.4 Create/Delete/Free Record
long dbCreateRecord(DBENTRY *pdbentry,char *precordName);
long dbDeleteRecord(DBENTRY *pdbentry);
long dbFreeRecords(DBBASE *pdbbase);

dbCreateRecord , which assumes thatDBENTRYreferences a valid record type, creates a new record instance
initializes it as specified by the record description. If it returns success, thenDBENTRYreferences the record just created
dbDeleteRecord deletes a single record instance/.dbFreeRecords deletes all record instances.

14.9.5 Copy Record
long dbCopyRecord(DBENTRY *pdbentry, char *newRecordName

int overWriteOK)

This routine copies the record instance currently referenced byDBENTRY. Thus it creates and new record with the nam
newRecordName that is of the same type as the original record and copies the original records field values to th
record. IfnewRecordName already exists andoverWriteOK is true, then the originalnewRecordName is deleted
and recreated. IfdbCopyRecord completes successfully, DBENTRY references the new record.

14.9.6 Rename Record
long dbRenameRecord(DBENTRY *pdbentry, char *newname)
160 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Manipulating Menu Fields

n

e, i.e.
aller’s

ng
es

f

This routine renames the record instance currently referenced byDBENTRY. If dbRenameRecord completes
successfully, DBENTRY references the renamed record.

14.9.7 Record Visibility

These routines are for use by graphical configuration tools.

long dbVisibleRecord(DBENTRY *pdbentry);
long dbInvisibleRecord(DBENTRY *pdbentry);
int dbIsVisibleRecord(DBENTRY *pdbentry);

dbVisibleRecord sets a record to be visible.dbInvisibleRecord sets a record invisible.
dbIsVisibleRecord returns TRUE if a record is visible and FALSE otherwise.

14.9.8 Find Field
long dbFindField(DBENTRY *pdbentry,char *pfieldName);
int dbFoundField(DBENTRY *pdbentry);

Given that a record instance has been located,dbFindField finds the specified field. If it returns success, the
DBENTRYreferences that field.dbFoundField returns (FALSE, TRUE) if (no field instance is currently available, a
field instance is available).

14.9.9 Get/Put Field Values
char *dbGetString(DBENTRY *pdbentry);
long dbPutString(DBENTRY *pdbentry,char *pstring);
char *dbVerify(DBENTRY *pdbentry,char *pstring);
char *dbGetRange(DBENTRY *pdbentry);
int dbIsDefaultValue(DBENTRY *pdbentry);

These routines are used to get or change field values. They work on all the database field types exceptDCT_NOACCESS
but shouldNOT be used to prompt the user for information forDCT_MENU, DCT_MENUFORM, or DCT_LINK_xxx fields.
dbVerify returns (NULL, a message) if the string is (valid, invalid). Please note that the strings returned are volatil
the next call to a routines that returns a string will overwrite the value returned by a previous call. Thus it is the c
responsibility to copy the strings if the value must be kept.

DCT_MENU, DCT_MENUFORMandDCT_LINK_xxx fields can be manipulated via routines described in the followi
sections. If, howeverdbGetString and dbPutString are used, they do work correctly. For these field typ
dbGetString anddbPutString are intended to be used only for creating and restoring versions of a database.

14.10 Manipulating Menu Fields
These routines should only be used forDCT_MENUand DCT_MENUFORMfields. Thus they should only be called i
dbFindField , dbFirstField , or dbNextField has returned success and the field type isDCT_MENUor
DCT_MENUFORM.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 161

Chapter 14: Static Database Access
Manipulating Link Fields

h the

is
-1

ith the

refer to

or a
wing is

n

14.10.1 Get Number of Menu Choices
int dbGetNMenuChoices(DBENTRY *pdbentry);

This routine returns the number of menu choices for menu.

14.10.2 Get Menu Choice
char **dbGetMenuChoices(DBENTRY *pdbentry);

This routine returns the address of an array of pointers to strings which contain the menu choices.

14.10.3 Get/Put Menu
int dbGetMenuIndex(DBENTRY *pdbentry);
long dbPutMenuIndex(DBENTRY *pdbentry,int index);
char *dbGetMenuStringFromIndex(DBENTRY *pdbentry,int index);
int dbGetMenuIndexFromString(DBENTRY *pdbentry,

char *choice);

NOTE: These routines do not work if the current field value contains a macro definition.

dbGetMenuIndex returns the index of the menu choice for the current field, i.e. it specifies which choice to whic
field is currently set.dbPutMenuIndex sets the field to the choice specified by the index.

dbGetMenuStringFromIndex returns the string value for a menu index. If the index value is invalid NULL
returned.dbGetMenuIndexFromString returns the index for the given string. If the string is not a valid choice a
is returned.

14.10.4 Locate Menu
dbMenu *dbFindMenu(DBBASE *pdbbase,char *name);

dbFindMenu is most useful for runtime use but is a static database access routine. This routine just finds a menu w
given name.

14.11 Manipulating Link Fields

14.11.1 Link Types

Links are the most complicated types of fields. A link can be a constant, reference a field in another record, or can
a hardware device. Two additional complications arise for hardware links. The first is that fieldDTYP, which is a menu
field, determines if theINP or OUTfield is a device link. The second is that the information that must be specified f
device link is bus dependent. In order to shelter database configuration tools from these complications the follo
done for static database access.

• Static database access will treatDTYP as aDCT_MENUFORM field.

• The information for the link field related to theDCT_MENUFORMcan be entered via a set of form manipulatio
routines associated with theDCT_MENUFORMfield. Thus the link information can be entered via theDTYPfield
rather than the link field.
162 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Manipulating MenuForm Fields

tines are

e

orm. If
• The Form routines described in the next section can also be used with any link field.

Each link is one of the following types:

• DCT_LINK_CONSTANT : Constant value.

• DCT_LINK_PV : A process variable link.

• DCT_LINK_FORM : A link that can only be processed via the form routines described in the next chapter.

Database configuration tools can change any link between being a constant and a process variable link. Rou
provided to accomplish these tasks.

The routinesdbGetString , dbPutString , anddbVerify can be used for link fields but the form routines can b
used to provide a friendlier user interface.

14.11.2 All Link Fields
int dbGetNLinks(DBENTRY *pdbentry);
long dbGetLinkField(DBENTRY *pdbentry,int index)
int dbGetLinkType(DBENTRY *pdbentry);

These are routines for manipulatingDCT_xxxLINK fields. dbGetNLinks and dbGetLinkField are used to walk
through all the link fields of a record.dbGetLinkType returns one of the values:DCT_LINK_CONSTANT,
DCT_LINK_PV, DCT_LINK_FORM, or the value -1 if it is called for an illegal field.

14.11.3 Constant and Process Variable Links
long dbCvtLinkToConstant(DBENTRY *pdbentry);
long dbCvtLinkToPvlink(DBENTRY *pdbentry);

These routines should be used for modifyingDCT_LINK_CONSTANTor DCT_LINK_PV links. They should not be used
for DCT_LINK_FORM links, which should be processed via the associatedDCT_MENUFORM field described above.

14.12 Manipulating MenuForm Fields
These routines are used with aDCT_MENUFORMfield (a DTYPfield) to manipulate the associatedDCT_INLINK or
DCT_OUTLINK field. They can also be used on anyDCT_INLINK , DCT_OUTLINK, orDCT_FWDLINK field.

14.12.1 Alloc/Free Form
int dbAllocForm(DBENTRY *pdbentry)
long dbFreeForm(DBENTRY *pdbentry)

dbAllocForm allocates storage needed to manipulate forms. The return value is the number of elements in the f
the current field value contains a macro definition, the number of lines returned is 0.

14.12.2 Get/Put Form
char **dbGetFormPrompt(DBENTRY *pdbentry)
char **dbGetFormValue(DBENTRY *pdbentry)
long dbPutForm(DBENTRY *pdbentry, char **value)
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 163

Chapter 14: Static Database Access
Manipulating MenuForm Fields

tring.
by

ns
es have a

e of
dbGetFormPrompt returns a pointer to an array of pointers to character strings specifying the prompt s
dbGetFormValue returns the current values.dbPutForm , which can use the same array of values returned
dbGetForm , sets new values.

14.12.3 Verify Form
char **dbVerifyForm(DBENTRY *pdbentry,char **value)

dbVerifyForm can be called to verify user input. It returnsNULLif no errors are present. If errors are present, it retur
a pointer to an array of character strings containing error messages. Lines in error have a message and correct lin
NULL string.

14.12.4 Get Related Field
char *dbGetRelatedField(DBENTRY *pdbentry)

This routine returns the field name of the related field for a DCT_MENUFORM field. If it is called for any other typ
field it returns NULL.

14.12.5 Example

The following is code showing use of these routines:

char **value;
char **prompt;
char **error;
int n;

...
n = dbAllocForm(pdbentry);
if(n<=0) {<Error>}
prompt = dbGetFormPrompt(pdbentry);
value = dbGetFormValue(pdbentry);
for(i=0; i<n; i++) {

printf(”%s (%s) : \n”,prompt[i],value[i]);
/*The follwing accepts input from stdin*/
scanf(”%s”,value[i]);

}
error = dbVerifyForm(pdbentry,value);
if(error) {

for(i=0; i<n; i++) {
if(error[i]) printf(”Error: %s (%s) %s\n”, prompt[i],

value[i],error[i]);
}

}else {
dbPutForm(pdbentry,value)

}
dbFreeForm(pdbentry);

All value strings areMAX_STRING_SIZE in length.
164 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Find Breakpoint Table

version

can

t of
s are
A set of form calls for a particularDBENTRY, MUST begin with a call todbAllocForm and end with a call to
dbFreeForm . The values returned bydbGetFormPrompt , dbGetFormValue , anddbVerifyForm are valid only
between the calls todbAllocForm anddbFreeForm .

14.13 Find Breakpoint Table
brkTable *dbFindBrkTable(DBBASE *pdbbase,char *name)

This routine returns the address of the specified breakpoint table. It is normally used by the runtime breakpoint con
routines so will not be discussed further.

14.14 Dump Routines
void dbDumpPath(DBBASE *pdbbase)
void dbDumpRecord(DBBASE *pdbbase,char *precordTypeName,

int level);
void dbDumpMenu(DBBASE *pdbbase,char *menuName);
void dbDumpRecordType(DBBASE *pdbbase,char *recordTypeName);
void dbDumpFldDes(DBBASE *pdbbase,char *recordTypeName,

char *fname);
void dbDumpDevice(DBBASE *pdbbase,char *recordTypeName);
void dbDumpDriver(DBBASE *pdbbase);
void dbDumpBreaktable(DBBASE *pdbbase,char *name);
void dbPvdDump(DBBASE *pdbbase,int verbose);
void dbReportDeviceConfig(DBBASE *pdbbase,FILE *report);

These routines are used to dump information about the database.dbDumpRecord , dbDumpMenu, and
dbDumpDriver just call the corresponding dbWritexxxFP routine specifying stdout for the file.dbDumpRecDes,
dbDumpFldDes , anddbDumpDevice give internal information useful on an ioc. Note that all of these commands
be executed on an ioc. Just specify pdbbase as the first argument.

14.15 Examples

14.15.1 Expand Include

This example is like thedbExpand utility, except that it doesn’t allow path or macro substitution options, It reads a se
database definition files and writes all definitions to stdout. All include statements appearing in the input file
expanded.

/* dbExpand.c */
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <epicsPrint.h>
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 165

Chapter 14: Static Database Access
Examples

ate each
#include <dbStaticLib.h>

DBBASE *pdbbase = NULL;

int main(int argc,char **argv)
{

long status;
int i;
int arg;

if(argc<2) {
printf("usage: expandInclude file1.db file2.db...\n");
exit(0);

 }
for(i=1; i<argc; i++) {

status = dbReadDatabase(&pdbbase,argv[i],NULL,NULL);
if(!status) continue;
fprintf(stderr,"For input file %s",argv[i]);
errMessage(status,"from dbReadDatabase");

}
dbWriteMenuFP(pdbbase,stdout,0);
dbWriteRecordTypeFP(pdbbase,stdout,0);
dbWriteDeviceFP(pdbbase.stdout);
dbWriteDriverFP(pdbbase.stdout);
dbWriteRecordFP(pdbbase,stdout,0,0);
return(0);

}

14.15.2 dbDumpRecords

NOTE: This example is similar but not identical to the actualdbDumpRecords routine.

The following example demonstrates how to use the database access routines. The example shows how to loc
record and display each field.

void dbDumpRecords(DBBASE *pdbbase)
{

DBENTRY *pdbentry;
long status;

pdbentry = dbAllocEntry(pdbbase);
status = dbFirstRecordType(pdbentry);
if(status) {printf(”No record descriptions\n”);return;}
while(!status) {

printf(”record type: %s”,dbGetRecordTypeName(pdbentry));
status = dbFirstRecord(pdbentry);
if(status) printf(” No Records\n”);
else printf(”\n Record:%s\n”,dbGetRecordName(pdbentry));
while(!status) {

status = dbFirstField(pdbentry,TRUE);
if(status) printf(” No Fields\n”);
166 EPICS IOC Application Developer’s Guide

Chapter 14: Static Database Access
Examples
while(!status) {
printf(” %s:%s”,dbGetFieldName(pdbentry),

dbGetString(pdbentry));
status=dbNextField(pdbentry,TRUE);

}
status = dbNextRecord(pdbentry);

}
status = dbNextRecordType(pdbentry);

}
printf(”End of all Records\n”);
dbFreeEntry(pdbentry);

}

EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 167

Chapter 14: Static Database Access
Examples
168 EPICS IOC Application Developer’s Guide

ts.

es in

le field
eld types.
Chapter 15: Runtime Database Access

15.1 Overview
This chapter describes routines for manipulating and accessing an initialized IOC database.

This chapter is divided into the following sections:

• Database related include files. All of interest are listed and those of general interest are discussed briefly.

• Runtime database access overview.

• Description of each runtime database access routine.

• Runtime modification of link fields.

• Lock Set Routines

• Database to Channel Access Routines

• Old Database Access. This is the interface still used by Channel Access and thus by Channel Access clien

15.2 Database Include Files
Directorybase/include contains a number of database related include files. Of interest to this chapter are:

• dbDefs.h: Miscellaneous database related definitions

• dbFldTypes.h: Field type definitions

• dbAccess.h: Runtime database access definitions.

• link.h : Definitions for link fields.

15.2.1 dbDefs.h

This file contains a number of database related definitions. The most important are:

• PVNAME_SZ: The number of characters allowed in the record name.

• FLDNAME_SZ : The number of characters formerly allowed in a field name. This restriction no longer appli
any base software exceptdbCaLink .c. THIS SHOULD BE FIXED. It is unknown what effect removing this
restriction will have on Channel Access Clients.

• MAX_STRING_SIZE : The maximum string size for string fields or menu choices.

• DB_MAX_CHOICES : The maximum number of choices for a choice field.

15.2.2 dbFldTypes.h

This file defines the possible field types. A field’s type is perhaps its most important attribute. Changing the possib
types is a fundamental change to the IOC software, because many IOC software components are aware of the fi
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 169

Chapter 15: Runtime Database Access
Database Include Files

enum

he
access.

o a

s

his is

are bus.

apter.
The field types are:

• DBF_STRING: ASCII character string

• DBF_CHAR: Signed character

• DBF_UCHAR: Unsigned character

• DBF_SHORT: Short integer

• DBF_USHORT: Unsigned short integer

• DBF_LONG: Long integer

• DBF_ULONG: Unsigned long integer

• DBF_FLOAT : Floating point number

• DBF_DOUBLE: Double precision float

• DBF_ENUM: An enumerated field

• DBF_MENU: A menu choice field

• DBF_DEVICE : A device choice field

• DBF_INLINK : Input Link

• DBF_OUTLINK : Output Link

• DBF_FWDLINK : Forward Link

• DBF_NOACCESS: A private field for use by record access routines

A field of type DBF_STRING, ..., DBF_DOUBLEcan be a scalar or an array. ADBF_STRINGfield contains aNULL
terminated ascii string. The field typesDBF_CHAR, ...,DBF_DOUBLE correspond to the standard C data types.

DBF_ENUMis used for enumerated items, which is analogous to the C language enumeration. An example of an
field is fieldVAL of a multi bit binary record.

The field typesDBF_ENUM, DBF_MENU, and DBF_DEVICEall have an associated set of ASCII strings defining t
choices. For aDBF_ENUM, the record support module supplies values and thus are not available for static database
The database access routines locate the choice strings for the other types.

DBF_INLINK andDBF_OUTLINKspecify link fields. A link field can refer to a signal located in a hardware module, t
field located in a database record in the same IOC, or to a field located in a record in another IOC. ADBF_FWDLINKcan
only refer to a record in the same IOC. Link fields are described in a later chapter.

DBF_INLINK (input),DBF_OUTLINK(output), andDBF_FWDLINK(forward) specify that the field is a link structure a
defined in link.h . There are three classes of links:

1. Constant - The value associated with the field is a floating point value initialized with a constant value. T
somewhat of a misnomer because constant link fields can be modified viadbPutField or dbPutLink .

2. Hardware links - The link contains a data structure which describes a signal connected to a particular hardw
Seelink.h for a description of the bus types currently supported.

3. Process Variable Links - This is one of three types:
a. PV_LINK: The process variable name.
b. DB_LINK: A reference to a process variable in the same IOC.
c. CA_LINK: A reference to a variable located in another IOC.

DCT always creates aPV_LINK. When the IOC is initialized eachPV_LINK is converted either to aDB_LINK or a
CA_LINK.

DBF_NOACCESS fields are for private use by record processing routines.

15.2.3 dbAccess.h

This file is the interface definition for the run time database access library, i.e. for the routines described in this ch
170 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Runtime Database Access Overview

ecord

tures”

r in this

quire

s routines.
, accesses

tines that

database
ribed in
es in the
An important structure defined in this header file isDBADDR

typedef struct dbAddr{
struct dbCommon *precord;/* address of record*/
void *pfield; /* address of field*/
void *pfldDes; /* address of struct fldDes*/
void *asPvt; /* Access Security Private*/
long no_elements; /* number of elements (arrays)*/
short field_type; /* type of database field*/
short field_size; /* size (bytes) of the field*/
short special; /* special processing*/
short dbr_field_type; /*optimal database request type*/

}DBADDR;

• precord: Address of record. Note that its type is a pointer to a structure defining the fields common to all r
types. The common fields appear at the beginning of each record. A record support module can castprecord to
point to the specific record type.

• pfield: Address of the field within the record. Note thatpfield provides direct access to the data value.

• pfldDes: This points to a structure containing all details concerning the field. See Chapter “Database Struc
for details.

• asPvt: A field used by access security.

• no_elements: A string or numeric field can be either a scalar or an array. For scalar fieldsno_elements has the
value 1. For array fields it is the maximum number of elements that can be stored in the array.

• field_type: Field type.

• field_size: Size of one element of the field.

• special: Some fields require special processing. This specifies the type. Special processing is described late
manual.

• dbr_field_type: This specifies the optimal database request type for this field, i.e. the request type that will re
the least CPU overhead.

NOTE: pfield , no_elements , field_type , field_size , special , anddbr_field_type can all be set by
record support (cvt_dbaddr). Thus field_type , field_size , andspecial can differ from that specified by
pfldDes .

15.2.4 link.h

This header file describes the various types of link fields supported by EPICS.

15.3 Runtime Database Access Overview
With the exception of record and device support, all access to the database is via the channel or database acces
Even record support routines access other records only via database or channel access. Channel Access, in turn
the database via database access.

Perhaps the easiest way to describe the database access layer is to list and briefly describe the set of rou
constitute database access. This provides a good look at the facilities provided by the database.

Before describing database access, one caution must be mentioned. The only way to communicate with an IOC
from outside the IOC is via Channel Access. In addition, any special purpose software, i.e. any software not desc
this document, should communicate with the database via Channel Access, not database access, even if it resid
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 171

Chapter 15: Runtime Database Access
Runtime Database Access Overview

ultimately
er changed.

old and
same IOC as the database. Since Channel Access provides network independent access to a database, it must
call database access routines. The database access interface was changed in 1991, but Channel Access was nev
Instead a module was written which translates old style database access calls to new. This interface between the
new style database access calls is discussed in the last section of this chapter.

The database access routines are:

• dbNameToAddr: Locate a database variable.

• dbGetField: Get values associated with a database variable.

• dbGetLink : Get value of field referenced by database link (Macro)

• dbGetLinkValue : Get value of field referenced by database link (Subroutine)

• dbGet: Routine called bydbGetLinkValue anddbGetField

• dbPutField: Change the value of a database variable.

• dbPutLink : Change value referenced by database link (Macro)

• dbPutLinkValue : Change value referenced by database link (Subroutine)

• dbPut: Routine called bydbPutxxx functions.

• dbPutNotify : A database put with notification on completion

• dbNotifyCancel: CanceldbPutNotify

• dbNotifyAdd : Add a new record for to notify set.

• dbNotifyCompletion: Announce that put notify is complete.

• dbBufferSize: Determine number of bytes in request buffer.

• dbValueSize: Number of bytes for a value field.

• dbGetRset: Get pointer to Record Support Entry Table

• dbIsValueField: Is this field the VAL field.

• dbGetFieldIndex: Get field index. The first field in a record has index 0.

• dbGetNelement:Get number of elements in the field

• dbIsLinkConnected: Is the link field connected.

• dbGetPdbAddrFromLink : Get address of DBADDR.

• dbGetLinkDBFtype : Get field type of link.

• dbGetControlLimits : Get Control Limits.

• dbGetGraphicLimits : Get Graphic Limits.

• dbGetAlarmLimits : Get Alarm Limits

• dbGetPrecision: Get Precision

• dbGetUnits: Get Units

• dbGetNelements: Get Number of Elements

• dbGetSevr: Get Severity

• dbGetTimeStamp: Get Time Stamp

• dbPutAttribute Give a value to a record attribute.

• dbScanPassive: Process record if it is passive.

• dbScanLink: Process record referenced by link if it is passive.

• dbProcess: Process Record

• dbScanFwdLink: Scan a forward link.
172 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Runtime Database Access Overview

tions. When
of the

lds types

n the

wing
ptions
15.3.1 Database Request Types and Options

Before describing database access structures, it is necessary to describe database request types and request op
dbPutField or dbGetField are called one of the arguments is a database request type. This argument has one
following values:

• DBR_STRING: Value is aNULL terminated string

• DBR_CHAR: Value is a signed char

• DBR_UCHAR: Value is an unsigned char

• DBR_SHORT: Value is a short integer

• DBR_USHORT: Value is an unsigned short integer

• DBR_LONG: Value is a long integer

• DBR_ULONG: Value is an unsigned long integer

• DBR_FLOAT : Value is an IEEE floating point value

• DBR_DOUBLE: Value is an IEEE double precision floating point value

• DBR_ENUM: Value is a short which is the enum item

• DBR_PUT_ACKT: Value is an unsigned short for setting theACKT.

• DBR_PUT_ACKS: Value is an unsigned short for global alarm acknowledgment.

The request typesDBR_STRING,...,DBR_DOUBLEcorrespond exactly to valid data types for database fields.DBR_ENUM
corresponds to database fields that represent a set of choices or options. In particular it corresponds to the fie
DBF_ENUM, DBF_DEVICE, andDBF_MENU. The complete set of database field types are defined indbFldTypes.h .
DBR_PUT_ACKT andDBR_PUT_ACKS are used to perform global alarm acknowledgment.

dbGetField also accepts argument options which is a mask containing a bit for each additional type of informatio
caller desires. The complete set of options is:

• DBR_STATUS: returns the alarm status and severity

• DBR_UNITS: returns a string specifying the engineering units

• DBR_PRECISION: returns a long integer specifying floating point precision.

• DBR_TIME : returns the time

• DBR_ENUM_STRS: returns an array of strings

• DBR_GR_LONG: returns graphics info as long values

• DBR_GR_DOUBLE: returns graphics info as double values

• DBR_CTRL_LONG : returns control info as long values

• DBR_CTRL_DOUBLE : returns control info as double values

• DBR_AL_LONG : returns alarm info as long values

• DBR_AL_DOUBLE : returns alarm info as double values

15.3.2 Options
Example

The filedbAccess.h contains macros for using options. A brief example should show how they are used. The follo
example defines a buffer to accept an array of up to ten float values. In addition it contains fields for o
DBR_STATUS andDBR_TIME.

struct buffer {
DBRstatus
DBRtime
float value[10];

} buffer;
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 173

Chapter 15: Runtime Database Access
Database Access Routines

hes

ler
. This value

o this

and fields

g routines,
The associateddbGetField call is:

long options,number_elements,status;
 ...
options = DBR_STATUS | DBR_TIME;
number_elements = 10;
status = dbGetField(paddr,DBR_FLOAT,&buffer,&options,&number_elements);

ConsultdbAccess.h for a complete list of macros.

StructuredbAddr contains a fielddbr_field_type . This field is the database request type that most closely matc
the database field type. Using this request type will put the smallest load on the IOC.

Channel Access provides routines similar todbGetField , and dbPutField . It provides remote access to
dbGetField , dbPutField , and to the database monitors described below.

15.3.3 ACKT and ACKS

The request typesDBR_PUT_ACKTandDBR_PUT_ACKSare used for global alarm acknowledgment. The alarm hand
uses these requests. For each of these types the user (normally channel access) passes an unsigned short value
represents:

DBR_PUT_ACKT - Do transient alarms have to be acknowledged? (0,1) means (no, yes).

DBR_PUT_ACKS- The highest alarm severity to acknowledge. If the current alarm severity is less then or equal t
value the alarm is acknowledged.

15.4 Database Access Routines

15.4.1 dbNameToAddr

Locate a process variable, format:

long dbNameToAddr(
char *pname, /*ptr to process variable name */
struct dbAddr *paddr);

The most important goal of database access can be stated simply: Provide quick access to database records
within records. The basic rules are:

• Call dbNameToAddr once and only once for each field to be accessed.

• Read field values viadbGetField and write values viadbPutField .

The routines described in this subsection are used by channel access, sequence programs, etc. Record processin
however, use the routines described in the next section rather thendbGetField anddbPutField .

Given a process variable name, this routine locates the process variable and fills in the fields of structuredbAddr . The
format for a process variable name is:

 “<record_name>.<field_name> ”

For example the value field of a record with record namesample_name is:

 “sample_name.VAL ”.

The record name is case sensitive. Field names always consist of all upper case letters.
174 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Database Access Routines

nd field
ord via
ted the

e

et values
honors
d scalar.
dbNameToAddr locates a record via a process variable directory (PVD). It fills in a structure (dbAddr) describing the
field. dbAddr contains the address of the record and also the field. Thus other routines can locate the record a
without a search. Although the PVD allows the record to be located via a hash algorithm and the field within a rec
a binary search, it still takes about 80 microseconds (25MHz 68040) to located a process variable. Once loca
dbAddr structure allows the process variable to be accessed directly.

15.4.2 Get Routines

15.4.2.1 dbGetField

Get values associated with a process variable, format:

long dbGetField(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx */
void *pbuffer, /*addr of returned data */
long *options, /*addr of options */
long *nRequest, /*addr of number of elements */
void *pfl); /*used by monitor routines */

Thus routine locks, callsdbGet , and unlocks.

15.4.2.2 dbGetLink and dbGetLinkValue

Get value from the field referenced by a database link, format:

long dbGetLink(
struct db_link *pdbLink,/*addr of database link*/
short dbrType,/* DBR_xxx*/
void *pbuffer,/*addr of returned data*/
long *options,/*addr of options*/
long *nRequest);/*addr of number of elements desired*/

NOTES:
 1) options can be NULL if no options are desired.
 2) nRequest can be NULL for a scalar.

dbGetLink is actually a macro that callsdbGetLinkValue . The macro skips the call for constant links. User cod
should never calldbGetLinkValue .

This routine is called by database access itself and by record support and/or device support routines in order to g
for input links. The value can be obtained directly from other records or via a channel access client. This routine
the link options (process and maximize severity). In addition it has code that optimizes the case of no options an

15.4.2.3 dbGet

Get values associated with a process variable, format:

long dbGet(
struct dbAddr*paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of returned data
long *options,/*addr of options*/
long *nRequest,/*addr of number of elements*/
void *pfl); /*used by monitor routines*/
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 175

Chapter 15: Runtime Database Access
Database Access Routines

buffer

ller
uest

en 1 and
eld

g
tual

is
Thus routine retrieves the data referenced bypaddr and converts it to the format specified bydbrType .

”options ” is a read/write field. Upon entry todbGet , options specifies the desired options. WhendbGetField
returns,options specifies the options actually honored. If an option is not honored, the corresponding fields in
are filled with zeros.

”nRequest ” is also a read/write field. Upon entry todbGet it specifies the maximum number of data elements the ca
is willing to receive. WhendbGet returns it equals the actual number of elements returned. It is permissible to req
zero elements. This is useful when only option data is desired.

”pfl ” is a field used by the Channel Access monitor routines. All other users must setpfl =NULL.

dbGet calls one of a number of conversion routines in order to convert data from theDBFtypes to theDBRtypes. It calls
record support routines for special cases such as arrays. For example, if the number of field elements is greater th
record support routineget_array_info exists, then it is called. It returns two values: the current number of valid fi
elements and an offset. The number of valid elements may not matchdbAddr .no_elements , which is really the
maximum number of elements allowed. The offset is for use by records which implement circular buffers.

15.4.3 Put Routines

15.4.3.1 dbPutField

Change the value of a process variable, format:

long dbPutField(
structdbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one of theDBR_xxx formats, converting it as necessary, and modifyin
the database. Similar todbGetField , this routine calls one of a number of conversion routines to do the ac
conversion and relies on record support routines to handle arrays and other special cases.

It should be noted that routinedbPut does most of the work. The actual algorithm fordbPutField is:

1. If theDISP field isTRUE then, unless it is theDISP field itself which is being modified, the field is not written.

2. The record is locked.

3. dbPut is called.

4. If thedbPut is successful then:
If this is thePROCfield or if both of the following areTRUE: 1) the field is a process passive field, 2) the record
passive.

a. If the record is already active ask for the record to be reprocessed when it completes.
b. CalldbScanPassive after settingputf TRUE to show the process request came fromdbPutField .

5. The record is unlocked.

15.4.3.2 dbPutLink and dbPutLinkValue

Change the value referenced by a database link, format:

long dbPutLink(
structdb_link *pdbLink,/*addr of database link*/
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data to write*/
long nRequest);/*number of elements to write*/
176 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Database Access Routines

e

t values

ed

g
and

plete
tire chain
pletion.

nless

rything

d by

he
dbPutLink is actually a macro that callsdbPutLinkValue . The macro skips the call for constant links. User cod
should never calldbPutLinkValue .

This routine is called by database access itself and by record support and/or device support routines in order to pu
into other database records via output links.

For Channel Access links it callsdbCaPutLink .

For database links it performs the following functions:

1. CallsdbPut .

2. Implements maximize severity.

3. If the field being referenced isPROCor if both of the following are true: 1)process_passive is TRUEand 2)
the record is passive then:

a. If the record is already active because of adbPutField request then ask for the record to be reprocess
when it completes.

b. otherwise calldbScanPassive .

15.4.3.3 dbPut

Put a value to a database field, format:

long dbPut(
struct dbAddr *paddr,
short dbrType, /* DBR_xxx*/
void *pbuffer,/*addr of data*/
long nRequest);/*number of elements to write*/

This routine is responsible for accepting data in one of theDBR_xxx formats, converting it as necessary, and modifyin
the database. Similar todbGet , this routine calls one of a number of conversion routines to do the actual conversion
relies on record support routines to handle arrays and other special cases.

15.4.4 Put Notify Routines

dbPutNotify is a request to notify the caller when all records that are processed as a result of a put com
processing. The complication occurs because of record linking and asynchronous records. A put can cause an en
of records to process. If any record is an asynchronous record then record completion means asynchronous com

The following rules are implemented:

1. If a putNotify is already active on the record to which the put is directed,dbPutNotify just returns
S_db_Blocked without calling the callback routine.

In all other cases, i.e. the cases for the following rules, the callback routine will be always be called u
dbNotifyCancel is called.

2. The user supplied callback is called when all processing is complete or when an error is detected. If eve
completes synchronously the callback routine will be called BEFOREdbPutNotify returns.

3. The user supplied callback routine must not issue any calls that block such as Unix I/O requests.

4. In general a set of records may need to be processed as a result of a singledbPutNotify . If database access
detects that anotherdbPutNotify request is active on any record in the set, other then the record reference
thedbPutNotify , then thedbPutNotify request will restarted

5. If a record in the set is found to be active because of adbPutField request then when that record completes t
dbPutNotify will be restarted.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 177

Chapter 15: Runtime Database Access
Database Access Routines

infinite

n

s

6. If a record is found to already be active because of the originaldbPutNotify request then nothing is done. This
is what is done now and any attempt to do otherwise could easily cause existing databases to go into an
processing loop.

It is expected that the caller will arrange a timeout in case thedbPutNotify takes too long. In this case the caller ca
call dbNotifyCancel

15.4.4.1 dbPutNotify

Perform a database put and notify when record processing is complete.

Format:

long dbPutNotify(PUTNOTIFY *pputnotify);

where PUTNOTIFY is

typedef struct putNotify{
void (*userCallback)(struct putNotify *);
DBADDR *paddr; /*dbAddr set by dbNameToAddr*/
void *pbuffer; /*address of data*/
long nRequest; /*number of elements to be written*/
short dbrType; /*database request type*/
void *usrPvt; /*for private use of user*/
/*The following is status of request.Set by dbPutNotify*/
long status;
/*fields private to database access*/
...

}PUTNOTIFY;

The caller must allocate aPUTNOTIFY structure and set the fields:

userCallback - Routine that is called upon completion
paddr - address of a DBADDR
pbuffer - address of data
nRequest - number of data elements
dbrType - database request type
usrPvt - a void * field that caller can use as needed.

The status value returned bydbPutNotify is either:

• S_db_Pending: Success: Callback may already have been called or will be called later.

• S_db_Blocked: The request failed because adbPutNotify is already active in the record to which the put i
directed.

When the user supplied callback is called, the status value stored inPUTNOTIFY is one of the following:

• 0: Success

• S_xxxx: The request failed due to some other error.

The user callback is always called unlessdbPutNotify returns S_db_Blocked ordbNotifyCancel is called before
the put notify competes.

15.4.4.2 dbNotifyCancel

Cancel an outstandingdbPutNotify .

Format:
178 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Database Access Routines

f

void dbNotifyCancel(PUTNOTIFY *pputnotify);

This cancels an activedbPutNotify .

15.4.4.3 dbNotifyAdd

This routine is called by database access itself. It should never be called by user code.

15.4.4.4 dbNotifyCompletion

This routine is called by database access itself. It should never be called by user code.

15.4.5 Utility Routines

15.4.5.1 dbBufferSize

Determine the buffer size for adbGetField request, format:

long dbBufferSize(
short dbrType, /* DBR_xxx*/
long options, /* options mask*/
long nRequest);/* number of elements*/

This routine returns the number of bytes that will be returned todbGetField if the request type, options, and number o
elements are specified as given todbBufferSize . Thus it can be used to allocate storage for buffers.

NOTE: This should become a Channel Access routine

15.4.5.2 dbValueSize

Determine the size a value field, format:

dbValueSize(short dbrType);/* DBR_xxx*/

This routine returns the number of bytes for each element of typedbrType .

NOTE: This should become a Channel Access routine

15.4.5.3 dbGetRest

Get address of a record support entry table.

Format:

struct rset *dbGetRset(DBADDR *paddr);

This routine returns the address of the record support entry table for the record referenced by theDBADDR.

15.4.5.4 dbIsValueField

Is this field the VAL field of the record?

Format:

int dbIsValueField(struct dbFldDes *pdbFldDes);

This is the routine that makes theget_value record support routine obsolete.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 179

Chapter 15: Runtime Database Access
Database Access Routines
15.4.5.5 dbGetFieldIndex

Get field index.

Format:

int dbGetFieldIndex(DBADDR *paddr);

Record support routines such asspecial andcvt_dbaddr need to know which field theDBADDRreferences. The
include file describing the record contains define statements for each field.dbGetFieldIndex returns the index that
can be matched against the define statements (normally via a switch statement).

15.4.5.6 dbGetNelements

Get number of elements in a field.

Format:

 long dbGetNelements(struct link *plink,long *nelements);

This sets *nelements to the number of elements in the field referenced by plink.

15.4.5.7 dbIsLinkConnected

Is the link connected.

Format:

int dbIsLinkConnected(struct link *plink);

This routine returns (TRUE, FALSE) if the link (is, is not) connected.

15.4.5.8 dbGetPdbAddrFromLink

Get address of DBADDR from link.

Format:

DBADDR *dbGetPdbAddrFromLink(struct link *plink);

This macro returns the address of the DBADDR for a database link and NULL for all other link types.

15.4.5.9 dbGetLinkDBFtype

Get field type of a link.

Format:

int dbGetLinkDBFtype(struct link *plink);

15.4.5.10 dbGetControlLimits

Get Control Limits for link.

Format:

long dbGetControlLimits(struct link *plink,double *low, double *high);

15.4.5.11 dbGetGraphicLimits

Get Graphic Limits for link.

Format:
180 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Database Access Routines
long dbGetGraphicLimits(struct link *plink,double *low, double *high);

15.4.5.12 dbGetAlarmLimits

Get Alarm Limits for link.

Format:

long dbGetAlarmLimits(struct link *plink,
double lolo,double *low, double *high,double hihi);

15.4.5.13 dbGetPrecision

Get Precision for link.

Format:

long dbGetPrecision(struct link *plink,short *precision);

15.4.5.14 dbGetUnits

Get Units for link.

Format:

long dbGetUnits(struct link *plink,char *units,int unitsSize);

15.4.5.15 dbGetSevr

Get Severity for link.

Format:

long dbGetSevr(struct link *plink,short *sevr);

15.4.5.16 dbGetTimeStamp

Get Time Stamp for record containing link.

Format:

long dbGetTimeStamp(struct link *plink,TS_STAMP *pstamp);

15.4.6 Attribute Routine

15.4.6.1 dbPutAttribute

Give a value to a record attribute.

long dbPutAttribute(char *recordTypename,
 char *name,char*value);

This sets the record attributename for record typerecordTypename to value. For example the following would set
the version for the ai record.

dbPutAttribute("ai","VERS","V800.6.95")
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 181

Chapter 15: Runtime Database Access
Runtime Link Modification

y

hat
eing

n”

device
15.4.7 Process Routines

15.4.7.1 dbScanPassive
dbScanLink
dbScanFwdLink

Process record if it is passive, format:

long dbScanPassive(
struct dbCommon *pfrom,
struct dbCommon *pto); /* addr of record*/

long dbScanLink(
struct dbCommon *pfrom,
struct dbCommon *pto);

void dbScanFwdLink(struct link *plink);

dbScanPassive anddbScanLink are given the record requesting the scan, which may beNULL, and the record to
be processed. If the record is passive andpact =FALSEthendbProcess is called. Note that these routine are called b
dbGetLink , dbPutField , and byrecGblFwdLink.

dbScanFwdLink is given a link that must be a forward link field. It follows the rules for scanning a forward link. T
is for DB_LINKs it calls dbScanPassive and for CA_LINKS it does a dbCaPutLink if the PROC field of record is b
addressed.

15.4.7.2 dbProcess

Request that a database record be processed, format:

long dbProcess(struct dbCommom *precord);

Request that record be processed. Record processing is described in detail below.

15.5 Runtime Link Modification
Database links can be changed at run time but only via a channel access client, i.e. via calls todbPutField but not to
dbPutLink . The following restrictions apply:

• Only DBR_STRING is allowed.

• If a link is being changed to a different hardware link type then theDTYPfield must be modified before the link
field.

• The syntax for the string field is exactly the same as described for link fields in chapter “Database Definitio

NOTE: For this release modification to/from hardware links has not been tested. In addition modification to record/
support will be needed in order to properly support dynamic modification of hardware links.
182 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Channel Access Monitors

ariable
hannel
ges in the

ents()” is

second
as been
ical or

lect

ificant

curred.
in the

ithin
urns 0
e future.

event
nt value,

not be
le for
ble.

in the
ers the
15.6 Channel Access Monitors
There are facilities within the Channel Access communication infrastructure which allow the value of a process v
to be monitored by a channel access client. It is a responsibility of record support (and db common) to notify the c
access server when the internal state of a process variable has been modified. State changes can include chan
value of a process variable and also changes in the alarm state of a process variable. The routine “db_post_ev
called to inform the channel access server that a process variable state change event has occurred.

#include <caeventmask.h>

int db_post_events(void *precord, void *pfield,
unsigned intselect);

The first argument, “precord”, should be passed a pointer to the record which is posting the event(s). The
argument, “pfield”, should be passed a pointer to the field in the record that contains the process variable that h
modified. The third argument, “select”, should be passed an event select mask. This mask can be any log
combination of {DBE_VALUE, DBE_LOG, DBE_ALARM}. A description of the purpose of each flag in the event se
mask follows.

• DBE_VALUE This indicates that a significant change in the process variable’s value has occurred. A sign
change is often determined by the magnitude of the monitor “dead band” field in the record.

• DBE_LOG This indicates that a change in the process variable’s value significant to archival clients has oc
A significant change to archival clients is often determined by the magnitude of the archive “dead band” field
record.

• DBE_ALARM This indicates that a change in the process variable’s alarm state has occurred.

The function “db_post_events()” returns 0 if it is successful and -1 if it fails. It appears to be common practice w
EPICS record support to ignore the status from “db_post_events()”. At this time “db_post_events()” always ret
(success). because so many records at this time depend on this behavior it is unlikely that it will be changed in th

The function “db_post_events()” is written so that record support will never be blocked attempting to post an
because a slow client is not able to process events fast enough. Each call to “db_post_events()” causes the curre
alarm status, and time stamp for the field to be copied into a ring buffer. The thread calling “db_post_events()” will
delayed by any network or memory allocation overhead. A lower priority thread in the server is responsib
transferring the events in the event queue to the channel access clients that may be monitoring the process varia

Currently, when an event is posted for a DBF_STRING field or a field containing array data the value is NOT saved
ring buffer and the client will receive whatever value happens to be in the field when the lower priority thread transf
event to the client. This behavior may be improved in the future.

15.7 Lock Set Routines
User code only callsdbScanLock anddbScanUnlock . All other routines are called byiocCore .

15.7.0.1 dbScanLock

Lock a lock set:

long void dbScanLock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 183

Chapter 15: Runtime Database Access
Lock Set Routines

in the

en links
15.7.0.2 dbScanUnlock

Unlock a lock set:

long void dbScanUnlock(struct dbCommon *precord);

Lock the lock set to which the specified record belongs

15.7.0.3 dbLockGetLockId

Get lock set id:

long dbLockGetLockId(struct dbCommon *precord);

Each lock set is assigned a unique ID. This routine retrieves it. This is most useful to determine if two records are
same lock set.

15.7.0.4 dbLockInitRecords

Determine lock sets for each record in database.

void dbLockInitRecords(dbBase *pdbbase);

Called byiocInit .

15.7.0.5 dbLockSetMerge

Merge records into same lock set.

void dbLockSetMerge(struct dbCommon *pfirst,
struct dbCommon *psecond);

If specified records are not in same lock set the lock sets are merged. Called by dbLockInitRecords and also wh
are modified bydbPutField .

15.7.0.6 dbLockSetSplitSl

Recompute lock sets for given lock set

void dbLockSetSplit(struct dbCommon *psource);

This is called whendbPutField modifys links.

15.7.0.7 dbLockSetGblLock

Global lock for modifying links.

void dbLockSetGblLock(void);

Only one task at a time can modify link fields. This routine provides a global lock to prevent conflicts.

15.7.0.8 dbLockSetGblUnlock

Unlock the global lock.

void dbLockSetGblUnlock(void);

15.7.0.9 dbLockSetRecordLock

If record is not already scan locked lock it.

void dbLockSetRecordLock(struct dbCommon *precord);
184 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Channel Access Database Links

t or output
k that
C. The
They are

quests
he search

s then
15.8 Channel Access Database Links
The routines described here are used to create and manipulate Channel Access connections from database inpu
links. At IOC initialization an attempt is made to convert all process variable links to database links. For any lin
fails, it is assumed that the link is a Channel Access link, i.e. a link to a process variable defined in another IO
routines described here are used to manage these links. User code never needs to call these routines.
automatically called by iocInit and database access.

At iocInit time a taskdbCaLink is spawned. This task is a channel access client that issues channel access re
for all channel access links in the database. For each link a channel access search request is issued. When t
succeeds a channel access monitor is established. The monitor is issued specifyingca_field_type and
ca_element_count . A buffer is also allocated to hold monitor return data as well as severity. WhendbCaGetLink is
called data is taken from the buffer, converted if necessary, and placed in the location specified by thepbuffer
argument.

When the firstdbCaPutLink is called for a link an output buffer is allocated, again usingca_field_type and
ca_element_count . The data specified by the pbuffer argument is converted and stored in the buffer. A request i
made todbCaLink task to issue aca_put . Subsequent calls todbCaPutLink reuse the same buffer.

15.8.1 Basic Routines

These routines are normally only called by database access, i.e. they are not called by record support modules.

15.8.1.1 dbCaLinkInit

Called byiocInit to initialize thedbCa library

void dbCaLinkInit(void);

15.8.1.2 dbCaAddLink

Add a new channel access link

void dbCaAddLink(struct link *plink);

15.8.1.3 dbCaRemoveLink

Remove channel access link.

void dbCaRemoveLink(struct link *plink);

15.8.1.4 dbCaGetLink

Get link value

long dbCaGetLink(struct link *plink,short dbrType,
void *pbuffer,unsigned short *psevr,long *nRequest);

15.8.1.5 dbCaPutLink

Put link value

long dbCaPutLink(struct link *plink,short dbrType,
void *buffering nRequest);
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 185

Chapter 15: Runtime Database Access
Channel Access Database Links
15.8.1.6 dbCaGetAttributes

Get Attributes

long dbCaGetAttributes(struct link *plink,
void (*callback)(void *usrPvt),void *usrPvt);

15.8.1.7 dbCaGetControlLimits

Get Control Limits

long dbCaGetControlLimits(struct link *plink,double *low, double *high);

15.8.1.8 dbCaGetGraphicLimits

Get graphic Limits

long dbCaGetGraphicLimits(struct link *plink,double *low, double *high);

15.8.1.9 dbCaGetAlarmLimits

Get Alarm Limits

long dbCaGetAlarmLimits(struct link *plink,
double *lolo, double *low, double *high, double *hihi);

15.8.1.10 dbCaGetPrecision

Get Precision

long dbCaGetPrecision(struct link *plink,short *precision);

15.8.1.11 dbCaGetUnits

Get Units

long dbCaGetUnits(struct link *plink,char *units,int unitsSize);

15.8.1.12 dbCaGetNelements

Get Number of Elements

long dbCaGetNelements(struct link *plink,long *nelements);

This call, which returns an error if link is not connected, sets the native number of elements.

15.8.1.13 dbCaGetSevr

Get Alarm Severity

long dbCaGetSevr(struct link *plink,short *severity);

This call, which returns an error if link is not connected, sets the alarm severity.

15.8.1.14 dbCaGetTimeStamp

Get Time Stamp

long dbCaGetTimeStamp(struct link *plink,TS_STAMP *pstamp));
186 EPICS IOC Application Developer’s Guide

Chapter 15: Runtime Database Access
Channel Access Database Links
15.8.1.15 dbCaIsLinkConnected

Is Channel Connected

int dbCaIsLinkConnected(struct link *plink)

This routine returns (TRUE, FALSE) if the link (is, is not) connected.

15.8.1.16 dbCaGetLinkDBFtype

Get link type

int dbCaGetLinkDBFtype(struct link *plink);
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 187

Chapter 15: Runtime Database Access
Channel Access Database Links
188 EPICS IOC Application Developer’s Guide

new
es will
Chapter 16: Device Support Library

NOTE: For 3.14 this is only available on vxWorks

16.1 Overview
Include filedevLib.h provides definitions for a library of routines useful for device and driver modules. These are a
addition to EPICS and are not yet used by all device/driver support modules. Until they are, the registration routin
not prevent addressing conflicts caused by multiple device/drivers trying to use the same VME addresses.

16.2 Registering VME Addresses

16.2.1 Definitions of Address Types
typedef enum {

atVMEA16,
atVMEA24,
atVMEA32,
atLast /* atLast must be the last enum in this list */
} epicsAddressType;

char *epicsAddressTypeName[]
= {
”VME A16”,
”VME A24”,
”VME A32”
};

int EPICStovxWorksAddrType[]
= {
VME_AM_SUP_SHORT_IO,
VME_AM_STD_SUP_DATA,
VME_AM_EXT_SUP_DATA

};

16.2.2 Register Address
long devRegisterAddress(
const char *pOwnerName,

epicsAddressType addrType,
void *baseAddress,
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 189

Chapter 16: Device Support Library
Interrupt Connect Routines

turns an
unsigned size,
void **pLocalAddress);

This routine is called to register a VME address. This routine keeps a list of all VME addresses requested and re
error message if an attempt is made to register any addresses that are already being used. *pLocalAddress is set equal
to the address as seen by the caller.

16.2.3 Unregister Address
long devUnregisterAddress(

epicsAddressType addrType,
void *baseAddress,
const char *pOwnerName);

This routine releases addresses previously registered by a call todevRegisterAddress .

16.3 Interrupt Connect Routines

16.3.1 Definitions of Interrupt Types
typedef enum {intCPU, intVME, intVXI} epicsInterruptType;

16.3.2 Connect
long devConnectInterrupt(

epicsInterruptType intType,
unsigned vectorNumber,
void (*pFunction)(),
void *parameter);

16.3.3 Disconnect
long devDisconnectInterrupt(

epicsInterruptType intType,
unsigned vectorNumber);

16.3.4 Enable Level
long devEnableInterruptLevel(

epicsInterruptType intType,
unsigned level);

16.3.5 Disable Level
long devDisableInterruptLevel(

epicsInterruptType intType,
190 EPICS IOC Application Developer’s Guide

Chapter 16: Device Support Library
Macros and Routines for Normalized Analog Values
unsigned level);

16.4 Macros and Routines for Normalized Analog Values

16.4.1 Normalized GetField
long devNormalizedGblGetField(

long rawValue,
unsigned nbits,
DBREQUEST *pdbrequest,
int pass,
CALLBACK *pcallback);

This routine is just likerecGblGetField , except that if the request type isDBR_FLOATor DBR_DOUBLE, the
normalized value ofrawValue is obtained, i.e.rawValue is converted to a value in the range 0.0<=value<.1.0

16.4.2 Convert Digital Value to a Normalized Double Value
#define devCreateMask(NBITS)((1<<(NBITS))-1)
#define devDigToNml(DIGITAL,NBITS) \

(((double)(DIGITAL))/devCreateMask(NBITS))

16.4.3 Convert Normalized Double Value to a Digital Value
#define devNmlToDig(NORMAL,NBITS) \

(((long)(NORMAL)) * devCreateMask(NBITS))
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 191

Chapter 16: Device Support Library
Macros and Routines for Normalized Analog Values
192 EPICS IOC Application Developer’s Guide

n code

vides a
ated or
xample a

ch more
t
andling

dled but

priority:
riority
callback
the task

sing. For
Chapter 17: EPICS General Purpose Tasks

17.1 Overview
This chapter describes two sets of EPICS supplied general purpose tasks: 1) Callback, and 2) Task Watchdog.

Often when writing code for an IOC there is no obvious task under which to execute. A good example is completio
for an asynchronous device support module. EPICS supplies the callback tasks for such code.

If an IOC tasks "crashes" there is normally no one monitoring the vxWorks shell to detect the problem. EPICS pro
task watchdog task which periodically checks the state of other tasks. If it finds that a monitored task has termin
suspended it issues an error message and can also call other routines which can take additional actions. For e
subroutine record can arrange to be put into alarm if a monitored task crashes.

Since IOCs normally run autonomously, i.e. no one is monitoring the vxWorks shell, IOC code that issuesprintf calls
generates errors messages that are never seen. In addition the vxWorks implementation of fprintf requires mu
stack space thenprintf calls. Another problem with vxWorks is thelogMsg facility. logMsg generates messages a
higher priority then all other tasks except the shell. EPICS solves all of these problems via an error message h
facility. Code can call any of the routineserrMessage , errPrintf , or epicsPrintf . Any of these result in the error
message being generated by a separate low priority task. The calling task has to wait until the message is han
other tasks are not delayed. In addition the message can be sent to a system wide error message file.

17.2 General Purpose Callback Tasks

17.2.1 Overview

EPICS provides three general purpose IOC callback tasks. The only difference between the tasks is scheduling
Low, Medium, and High. The low priority task runs at a priority just higher than Channel Access, the medium at a p
about equal to the median of the periodic scan tasks, and the high at a priority higher than the event scan task.The
tasks provide a service for any software component that needs a task under which to run. The callback tasks use
watchdog (described below). They use a rather generous stack and can thus be used for invoking record proces
example the I/O event scanner uses the general purpose callback tasks.

The following steps must be taken in order to use the general purpose callback tasks:

1. Include callback definitions:

#include <callback.h>

2. Provide storage for a structure that is a private structure for the callback tasks:

CALLBACK mycallback;
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 193

Chapter 17: EPICS General Purpose Tasks
General Purpose Callback Tasks

the

e same
It is permissible for this to be part of a larger structure, e.g.

struct {
...
CALLBACK mycallback;
...

} ...

3. Call routines (actually macros) to initialize fields inCALLBACK:

callbackSetCallback(VOIDFUNCPTR, CALLBACK *);

This defines the callers callback routine. The first argument is the address of a function returningVOID. The
second argument is the address of theCALLBACK structure.

callbackSetPriority(int, CALLBACK *);

The first argument is the priority, which can have one of the values:priorityLow , priorityMedium , or
priorityHigh . These values are defined incallback.h . The second argument is again the address of
CALLBACK structure.

callbackSetUser(VOID *, CALLBACK *);

This call is used to save a value that can be retrieved via a call to:

callbackGetUser(VOID *,CALLBACK *);

4. Whenever a callback request is desired just call one of the following:

callbackRequest(CALLBACK *);
callbackRequestProcessCallback(CALLBACK *);

Either can be called from interrupt level code. The callback routine is passed a single argument, which is th
argument that was passed tocallbackRequest , i.e., the address of theCALLBACK structure.

17.2.2 Syntax

The following calls are provided:

void callbackInit(void);

void callbackSetCallback(void *pcallbackFunction,
CALLBACK *pcallback);

void callbackSetPriority(int priority, CALLBACK *pcallback);
void callbackSetUser(void *user, CALLBACK *pcallback);

void callbackRequest(CALLBACK *);
void callbackRequestProcessCallback(CALLBACK *pCallback,

int Priority, void *pRec);

void callbackGetUser(void *user, CALLBACK *pcallback);

Notes:
194 EPICS IOC Application Developer’s Guide

Chapter 17: EPICS General Purpose Tasks
General Purpose Callback Tasks

this

ord

f the
• callbackInit is performed automatically when EPICS initializes and IOC. Thus user code never calls
function.

• callbackSetCallback , callbackSetPriority , callbackSetUser , and callbackGetUser are
actually macros.

• callbackRequest andcallbackRequestProcessCallback can both be called at interrupt level.

• callbackRequestProcessCallback is designed for the completion phase of asynchronous rec
processing. It issues the calls:

callbackSetCallback(ProcessCallback, pCallback);
callbackSetPriority(Priority, pCallback);
callbackSetUser(pRec, pCallback);
callbackRequest(pCallback);

ProcessCallback , which is designed for asynchronous device completion applications, consists o
following code:

static void ProcessCallback(CALLBACK *pCallback)
{

dbCommon *pRec;
struct rset *prset;

callbackGetUser(pRec, pCallback);
prset = (struct rset *)pRec->rset;
dbScanLock(pRec);
(*prset->process)(pRec);
dbScanUnlock(pRec);

}

17.2.3 Example

An example use of the callback tasks.

#include <callback.h>

static structure {
char begid[80];
CALLBACK callback;
char endid[80];

}myStruct;

void myCallback(CALLBACK *pcallback)
{

struct myStruct *pmyStruct;
callbackGetUser(pmyStruct,pcallback)
printf(”begid=%s endid=%s\n”,&pmyStruct->begid[0],

&pmStruct->endid[0]);
}
example(char *pbegid, char*pendid)
{

strcpy(&myStruct.begid[0],pbegid);
strcpy(&myStruct.endid[0],pendid);
callbackSetCallback(myCallback,&myStruct.callback);
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 195

Chapter 17: EPICS General Purpose Tasks
Task Watchdog

ts. This

he task
ued and,

t

the

pends.
his
callbackSetPriority(priorityLow,&myStruct.callback);
callbackSetUser(&myStruct,&myStruct.callback);
callbackRequest(&myStruct.callback);

}

The example can be tested by issuing the following command to the vxWorks shell:

example(”begin”,”end”)

This simple example shows how to use the callback tasks with your own structure that contains theCALLBACKstructure
at an arbitrary location.

17.2.4 Callback Queue

The callback requests put the requests on a vxWorks ring buffer. Thus buffer is set by default to hold 2000 reques
value can bechanged by callingcallbackSetQueueSize beforeincInit in the startup file. The syntax is:

int callbackSetQueueSize(int size)

17.3 Task Watchdog
EPICS provides an IOC task that is a watchdog for other tasks. Any task can make a request to be watched. T
watchdog runs periodically and checks each task in its task list. If any task is suspended, an error message is iss
optionally, a callback task is invoked. The task watchdog provides the following features:

1. Include module:

#include <taskwd.h>

2. Insert request:

taskwdInsert (int tid, TASKWDFUNCPRR callback,
VOID *userarg);

This is the request to include the task with the specifiedtid in the list of tasks to be watched. If callback is no
NULL then if the task becomes suspended, the callback routine will be called with a single argumentuserarg .

3. Remove request:

taskwdRemove(int tid);

This routine would typically be called from the callback routine invoked when the original task goes into
suspended state.

4. Insert request to be notified if any task suspends:

taskwdAnyInsert(void *userpvt,TASKWDFUNCPRR callback,
VOID *userarg);

The callback routine will be called whenever any of the tasks being monitored by the task watchdog task sus
userpvt must have a nonNULLunique valuetaskwdAnyInsert , because the task watchdog system uses t
value to determine who to remove iftaskwdAnyRemove is called.

5. Remove request fortaskwdAnyInsert:
196 EPICS IOC Application Developer’s Guide

Chapter 17: EPICS General Purpose Tasks
Task Watchdog
taskwdAnyRemove(void *userpvt);

userpvt is the value that was passed totaskwdAnyInsert .
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 197

Chapter 17: EPICS General Purpose Tasks
Task Watchdog
198 EPICS IOC Application Developer’s Guide

:

l to the

dware

s
ssing. It
ut

d with
ow the

e any
ol to the
Chapter 18: Database Scanning

18.1 Overview
Database scanning is the mechanism for deciding when to process a record. Five types of scanning are possible

• Periodic: A record can be processed periodically. A number of time intervals are supported.

• Event: Event scanning is based on the posting of an event by another component of the software via a cal
routinepost_event .

• I/O Event: The original meaning of this scan type is a request for record processing as a result of a har
interrupt. The mechanism supports hardware interrupts as well as software generated events.

• Passive: Passive records are processed only via requests todbScanPassive . This happens when database link
(Forward, Input, or Output), which have been declared ”Process Passive” are accessed during record proce
can also happen as a result ofdbPutField being called (This normally results from a Channel Access p
request).

• Scan Once: In order to provide for caching puts, The scanning system provides a routinescanOnce which
arranges for a record to be processed one time.

This chapter explains database scanning in increasing order of detail. It first explains database fields involve
scanning. It next discusses the interface to the scanning system. The last section gives a brief overview of h
scanners are implemented.

18.2 Scan Related Database Fields
The following fields are normally defined via DCT. It should be noted, however, that it is quite permissible to chang
of the scan related fields of a record dynamically. For example, a display manager screen could tie a menu contr
SCAN field of a record and allow the operator to dynamically change the scan mechanism.

18.2.1 SCAN

This field, which specifies the scan mechanism, has an associated menu of the following form:

Passive: Passively scanned.
Event: Event Scanned. The fieldEVNT specifies event number
I/O Event scanned.
10 Second: Periodically scanned - Every 10 seconds
...
.1 Second: Periodically scanned - Every .1 seconds
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 199

Chapter 18: Database Scanning
Scan Related Software Components

iodically

for
ware

O event

n rates,
n. The
rates can
18.2.2 PHAS

This field determines processing order for records that are in the same scan set. For example all records per
scanned at a 2 second rate are in the same scan set. All Event scanned records with the sameEVNTare in the same scan
set, etc. For records in the same scan set, all records withPHAS=0 are processed before records withPHAS=1, which are
processed before all records withPHAS=2, etc.

In general it is not a good idea to rely onPHAS to enforce processing order. It is better to use database links.

18.2.3 EVNT - Event Number

This field only has meaning whenSCANis set toEvent scanning, in which case it specifies the event number. In order
a record to be event scanned,EVNTmust be in the range 0,...255. It should also be noted that some EPICS soft
components will not request event scanning for event 0. One example is theeventRecord record support module. Thus
the application developer will normally want to define events in the range 1,...,255.

18.2.4 PRIO - Scheduling Priority

This field can be used by any software component that needs to specify scheduling priority, e.g. the event and I/
scan facility uses this field.

18.3 Scan Related Software Components

18.3.1 menuScan.dbd

This file contains definitions for a menu related to fieldSCAN. The definitions are of the form:

menu(menuScan) {
choice(menuScanPassive,”Passive”)
choice(menuScanEvent,”Event”)
choice(menuScanI_O_Intr,”I/O Intr”)
choice(menuScan10_second,”10 second”)
choice(menuScan5_second,”5 second”)
choice(menuScan2_second,”2 second”)
choice(menuScan1_second,”1 second”)
choice(menuScan_5_second,”.5 second”)
choice(menuScan_2_second,”.2 second”)
choice(menuScan_1_second,”.1 second”)

}

The first three choices must appear first and in the order shown. The remaining definitions are for the periodic sca
which must appear in order of decreasing rate. At IOC initialization, the menu values are read by scan initializatio
number of periodic scan rates and the value of each rate is determined from the menu values. Thus periodic scan
be changed by changingmenuScan.dbd and loading this version viadbLoadDatabase . The only requirement is that
each periodic definition must begin with the value and the value must be in units of seconds.
200 EPICS IOC Application Developer’s Guide

Chapter 18: Database Scanning
Scan Related Software Components

scan

he
ch
18.3.2 dbScan.h

All software components that interact with the scanning system must include this file.

The most important definitions in this file are:

/* Note that these must match the first four definitions*/
/* in choiceGbl.dbd*/
#define SCAN_PASSIVE 0
#define SCAN_EVENT 1
#define SCAN_IO_EVENT 2
#define SCAN_1ST_PERIODIC 3

/*definitions for SCAN_IO_EVENT */
typedef void * IOSCANPVT;
extern int interruptAccept;

long scanInit(void);
void post_event(int event);
void scanAdd(struct dbCommon *);
void scanDelete(struct dbCommon *);
void scanOnce(void *precord);
int scanOnceSetQueueSize(int size);
int scanppl(void); /*print periodic lists*/
int scanpel(void); /*print event lists*/
int scanpiol(void); /*print io_event list*/
void scanIoInit(IOSCANPVT *);
void scanIoRequest(IOSCANPVT);

The first set of definitions defines the various scan types. The next two definitions (IOSCANPVT and
interruptAccept) are for interfacing with the I/O event scanner. The remaining definitions define the public
access routines. These are described in the following subsections.

18.3.3 Initializing Database Scanners
scanInit(void);

The routinescanInit is called byiocInit . It initializes the scanning system.

18.3.4 Adding And Deleting Records From Scan List

The following routines are called each time a record is added or deleted from a scan list.

scanAdd(struct dbCommon *);
scanDelete(struct dbCommon *);

These routines are called byscanInit at IOC initialization time in order to enter all records created via DCT into t
correct scan list. The routinedbPut calls scanDelete andscanAdd each time a scan related field is changed (ea
scan related field is declared to beSPC_SCANin dbCommon.dbd). scanDelete is called before the field is modified
andscanAdd after the field is modified.

18.3.5 Declaring Database Event

Whenever any software component wants to declare a database event, it just calls:
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 201

Chapter 18: Database Scanning
Scan Related Software Components

record

t.
give a

llback
post_event(event)

This can be called by virtually any IOC software component. For example sequence programs can call it. The
support module foreventRecord calls it.

18.3.6 Interfacing to
I/O Event Scanning

Interfacing to the I/O event scanner is done via some combination of device and driver support.

1. Include<dbScan.h>

2. For each separate event source the following must be done:
a. Declare anIOSCANPVT variable, e.g.

static IOSCANPVT ioscanpvt;
b. CallscanIoInit , e.g.

scanIoInit(&ioscanpvt);

3. Provide the device supportget_ioint_info routine. This routine has the format:
long get_ioint_info(

int cmd,
struct dbCommon *precord,

IOSCANPVT *ppvt);
This routine is called each time the record pointed to byprecord is added or deleted from an I/O event scan lis
cmd has the value (0,1) if the record is being (added to, deleted from) an I/O event list. This routine must
value to *ppvt .

4. Whenever an I/O event is detected callscanIoRequest , e.g.
scanIoRequest(ioscanpvt)

This routine can be called from interrupt level. The request is actually directed to one of the standard ca
tasks. The actual one is determined by thePRIO field ofdbCommon.

The following code fragment shows an event record device support module that supports I/O event scanning:

#include <vxWorks.h>
#include <types.h>
#include <stdioLib.h>
#include <intLib.h>
#include <dbDefs.h>
#include <dbAccess.h>
#include <dbScan.h>
#include <recSup.h>
#include <devSup.h>
#include <eventRecord.h>
/* Create the dset for devEventXXX */
long init();
long get_ioint_info();
struct {

long number;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_event;

}devEventTestIoEvent={
5,
202 EPICS IOC Application Developer’s Guide

Chapter 18: Database Scanning
Implementation Overview

an
NULL,
init,
NULL,
get_ioint_info,
NULL};

static IOSCANPVT ioscanpvt;
static void int_service(IOSCANPVT ioscanpvt)
{
 scanIoRequest(ioscanpvt);
}

static long init()
{
 scanIoInit(&ioscanpvt);
 intConnect(<vector>,(FUNCPTR)int_service,ioscanpvt);
 return(0);
}
static long get_ioint_info(

int cmd,
struct eventRecord *pr,
IOSCANPVT *ppvt)

{
 *ppvt = ioscanpvt;
 return(0);
}

18.4 Implementation Overview
The code for the entire scanning system resides indbScan.c , i.e. periodic, event, and I/O event. This section gives
overview of how the code indbScan.c is organized. The listing ofdbScan.c must be studied for a complete
understanding of how the scanning system works.

18.4.1 Definitions And Routines Common To All Scan Types

Everything is built around two basic structures:

struct scan_list {
FAST_LOCK lock;
ELLLIST list;
short modified;
long ticks; /*used only for periodic scan sets*/

};

struct scan_element{
ELLNODE node;
struct scan_list *pscan_list;
struct dbCommon *precord;

}

EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 203

Chapter 18: Database Scanning
Implementation Overview

d
fields
is, of

ng:

ch

y layout
Later we will see howscan_lists are determined. For now just realize thatscan_list.list is the head of a list of
records that belong to the same scan set (for example, all records that are periodically scanned at a 1 second rate are in the
same scan set). The node field inscan_element contain the list links. The normal vxWorkslstLib routines are used
to access the list. Each record that appears in some scan list has an associatedscan_element . TheSPVTfield which
appears indbCommon holds the address of the associatedscan_element .

The lock , modified , andpscan_list fields allowscan_elements , i.e. records, to be dynamically removed an
added to scan lists. IfscanList , the routine which actually processes a scan list, is studied it can be seen that these
allow the list to be scanned very efficiently if no modifications are made to the list while it is being scanned. This
course, the normal case.

ThedbScan.c module contains several private routines. The following access a single scan set:

• printList : Prints the names of all records in a scan set.

• scanList: This routine is the heart of the scanning system. For each record in a scan set it does the followi
dbScanLock(precord);
dbProcess(precord);
dbScanUnlock(precord);

It also has code to recognize when a scan list is modified while the scan set is being processed.

• addToList: This routine adds a new element to a scan list.

• deleteFromList: This routine deletes an element from a scan list.

18.4.2 Event Scanning

Event scanning is built around the following definitions:

#define MAX_EVENTS 256
typedef struct event_scan_list {

 CALLBACK callback;
 scan_list scan_list;

}event_scan_list;
static event_scan_list

*pevent_list[NUM_CALLBACK_PRIORITIES][MAX_EVENTS];

pevent_list is a 2d array of pointers toscan_lists . Note that the array allows for 256 events, i.e. one for ea
possible event number. In other words, each event number and priority has its own scan list. Noscan_list is actually
created until the first request to add an element for that event number. The event scan lists have the memor
illustrated in Figure 18-1.

Figure 18-1: Scan List Memory Layout

pevent_list[][]

...

event_scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

scan_element
 node
 . . .
 precord

. . .
204 EPICS IOC Application Developer’s Guide

Chapter 18: Database Scanning
Implementation Overview

each
re
ne

d
spawned

rce the
18.4.2.1 post_event

post_event(int event)

This routine is called to request event scanning. It can be called from interrupt level. It looks at
event_scan_list referenced bypevent_list [*][event] (one for each callback priority) and if any elements a
present in the scan_list a callbackRequest is issued. The appropriate callback task calls routi
eventCallback , which just callsscanList .

18.4.3 I/O Event Scanning

I/O event scanning is built around the following definitions:

struct io_scan_list {
CALLBACK callback;
struct scan_list scan_list;
struct io_scan_list *next;

}
static struct io_scan_list

 *iosl_head[NUM_CALLBACK_PRIORITIES]
= {NULL,NULL,NULL};

The arrayiosl_head and the fieldnext are only kept so thatscanpiol can be implemented and will not be discusse
further. I/O event scanning uses the general purpose callback tasks to perform record processing, i.e. no task is
for I/O event. The callback field ofio_scan_list is used to communicate with the callback tasks.

The following routines implement I/O event scanning:

18.4.3.1 scanIoInit

scanIoInit (IOSCANPVT *ppioscanpvt)

This routine is called by device or driver support. It is called once for each interrupt source.scanIoInit allocates and
initializes an array ofio_scan_list structures; one for each callback priority and puts the address inpioscanpvt .
Remember that three callback priorities are supported (low, medium, and high). Thus for each interrupt sou
structures are illustrated in Figure 18-1:

When scanAdd or scanDelete are called, they call the device support routineget_ioint_info which returns
pioscanpvt . Thescan_element is added or deleted from the correct scan list.

18.4.3.2 scanIoRequest

scanIoRequest (IOSCANPVT pioscanpvt)

Figure 18-1: Interrupt Source Structure

pioscanpvt

...
io_scan_list
 .callback
 scan_list
 . . .

scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

. . .
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 205

Chapter 18: Database Scanning
Implementation Overview

d in
This routine is called to request I/O event scanning. It can be called from interrupt level. It looks at eachio_scan_list
referenced bypioscanpvt (one for each callback priority) and if any elements are present in thescan_list a
callbackRequest is issued. The appropriate callback task calls routineioeventCallback , which just calls
scanList .

18.4.4 Periodic Scanning

Periodic scanning is built around the following definitions:

static int nPeriodic;
static struct scan_list **papPeriodic;
static int *periodicTaskId;

nPeriodic , which is determined atiocInit time, is the number of periodic rates.papPeriodic is a pointer to an
array of pointers toscan_lists . There is an array element for each scan rate. Thus the structure illustrate
Figure 18-1 exists afteriocInit .

A periodic scan task is created for each scan rate. The following routines implement periodic scanning:

18.4.4.1 initPeriodic

initPeriodic()

This routine first determines the scan rates. It does this by accessing theSCANfield of the first record it finds. It issues a
call todbGetField with aDBR_ENUMrequest. This returns the menu choices forSCAN. From this the periodic rates are
determined. The array of pointers referenced bypapPeriodic is allocated. For each scan rate ascan_list is
allocated and aperiodicTask is spawned.

18.4.4.2 periodicTask

periodicTask (struct scan_list *psl)

This task just performs an infinite loop of callingscanList and then callingtaskDelay to wait until the beginning of
the next time interval.

18.4.5 Scan Once

18.4.5.1 scanOnce

void scanOnce (void *precord)

A task onceTask waits for requests to issue adbProcess request. The routinescanOnce puts the address of the
record to be processed in a ring buffer and wakes uponceTask .

Figure 18-1: Structure after iocInit

papPeriodic

...
scan_list
 . . .
 list
 . . .

scan_element
 node
 . . .
 precord

. . .
scan_element
 node
 . . .
 precord
206 EPICS IOC Application Developer’s Guide

Chapter 18: Database Scanning
Implementation Overview

ged by
This routine can be called from interrupt level.

18.4.5.2 SetQueueSize

scanOnce places its request on a vxWorks ring buffer.This is set by default to 1000 entries. It can be chan
executing the following command in the vxWorks startup file.

int scanOnceSetQueueSize(int size);
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 207

Chapter 18: Database Scanning
Implementation Overview
208 EPICS IOC Application Developer’s Guide

Chapter 19: libCom
bucketLib.h

ich are
forms.

rrently

ecord in

ity to
y of size

ression.

ported

d and
Chapter 19: libCom

This chapter and the next describe the facilities provided in <base>/src/libCom. This chapter describes facilities wh
platform independent. The next chapter describes facilities which have different implementations on different plat

19.1 bucketLib.h
This is a hash facility for integers, pointers, and strings. It is used by the Channel Access Server. It is cu
undocumented.

19.2 calc
postfix.h defines routines used by calcRecord, access security, and other code. Read the description of the calcR
the Record Reference Manual to see a description of what is supported.

long postfix (char *pinfix, char *ppostfix, short *perror);
long calcPerform(double *parg, double *presult, char *ppostfix);

The caller calls postfix to convert the CALC expression from infix to postfix notation. It is the callers’s responsibil
make sure that ppostfix points to sufficient storage to hold the postfix expression. The calcRecord uses an arra
200.

The arguments to calcPerform are:

parg - The address on a array of doubles containing that arguments A,...L that can appear in the CALC exp
presult - The address of the result of calling calcPerform.
ppostfix - The postfix expression created by postfix.

sCalcPostfix.h contains definitions for code that adds string manipulation facilities in addition to the facilities sup
by postfix.h

19.3 cvtFast.h
This provoides routines for converting various numeric types to ascii string. They offer a combination of spee
convenience not available with sprintf.

/*
 * each of these functions return the number of characters "transmitted"
 * (as in ANSI-C/POSIX.1/XPG3 sprintf() functions)
 */
int cvtFloatToString(
 float value, char *pstring, unsigned short precision);
int cvtDoubleToString(
 double value, char *pstring, unsigned short precision);
int cvtFloatToExpString(
 float value, char *pstring, unsigned short precision);
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 209

Chapter 19: libCom
cxxTemplates.h

not been

ave an
int cvtDoubleToExpString(
 double value, char *pstring, unsigned short precision);
int cvtFloatToCompactString(
 float value, char *pstring,unsigned short precision);
int cvtDoubleToCompactString(
 double value, char *pstring, unsigned short precision);
int cvtCharToString(char value, char *pstring);
int cvtUcharToString(unsigned char value, char *pstring);
int cvtShortToString(short value, char *pstring);
int cvtUshortToString(unsigned short value, char *pstring);
int cvtLongToString(long value, char *pstring);
int cvtUlongToString(unsigned long value, char *pstring);
int cvtLongToHexString(long value, char *pstring);
int cvtLongToOctalString(long value, char *pstring);
unsigned long cvtBitsToUlong(
 unsigned long src,
 unsigned bitFieldOffset,
 unsigned bitFieldLength);
unsigned long cvtUlongToBits(
 unsigned long src,
 unsigned long dest,
 unsigned bitFieldOffset,
 unsigned bitFieldLength);

19.4 cxxTemplates.h
This contains the following C++ templates:

• resourceLib - A C++ hash facility that implements the same functionality as bucketLib

• tsBTree - Binary tree.

• tsDLList - Double Linked List

• tsFreeList - Free List for efficient new/delete

• tsMinMax - min and max.

• tsSLList - Single Linked List

Currently these are only being used by Channel Access Clients and the portable Channel Access Server. It has
decided if any of these will remain in libCom.

19.5 dbmf.h
Routines like dbLoadDatabase have the following attribute:

• They issue many calls to malloc followed a short time later by a call to free the memory.

• Between a call to malloc and the associated free, an additional call to malloc is issued that does NOT h
associated free.

In some envirinments, e.g. vxWorks,such behaviorcauses severe memory fragmentation.
210 EPICS IOC Application Developer’s Guide

Chapter 19: libCom
ellLib.h

storage
scribed

rks
Dmbf(Database Macro/Free) prevents the memory fragmentation. It should NOT be used by code that allocates
and then keeps it for a considerable period of time before releasing. Such code can use the freeList library de
below. If dbmfMalloc is called with a request greater than size, the regular malloc is called.

int dbmfInit(size_t size, int chunkItems);
void *dbmfMalloc(size_t bytes);
void dbmfFree(void* bytes);
void dbmfFreeChunks(void);
int dbmfShow(int level);
/* Rules:
 * 1) Size is always made a multiple of 8.
 * 2) if dbmfInit is not called before one of the other routines then it
 * is automatically called with size=64 and chuckItems=10
 * 3) These routines should only be used to allocate storage that will
 * shortly thereafter be freed.
 * 4) dbmfFreeChunks can only free chunks that contain only free items
*/

19.6 ellLib.h
This is a double linked list library. It provides finctionality similar to the vxWorks lstLib library. See the vxWo
documantation for details. In most cases there is an ellXXX routine to replace each vxWorks lstXXX routine.

typedef struct ELLNODE {
 struct ELLNODE *next;
 struct ELLNODE *previous;
}ELLNODE;

typedef struct ELLLIST {
 ELLNODE node;
 int count;
void ellInit (ELLLIST *pList);
int ellCount (ELLLIST *pList);
ELLNODE *ellFirst (ELLLIST *pList);
ELLNODE *ellLast (ELLLIST *pList);
ELLNODE *ellNext (ELLNODE *pNode);
ELLNODE *ellPrevious (ELLNODE *pNode);
void ellAdd (ELLLIST *pList, ELLNODE *pNode);
void ellConcat (ELLLIST *pDstList, ELLLIST *pAddList);
void ellDelete (ELLLIST *pList, ELLNODE *pNode);
void ellExtract (ELLLIST *pSrcList, ELLNODE *pStartNode,
 ELLNODE *pEndNode, ELLLIST *pDstList);
ELLNODE *ellGet (ELLLIST *pList);
void ellInsert (ELLLIST *plist, ELLNODE *pPrev, ELLNODE *pNode);
ELLNODE *ellNth (ELLLIST *pList, int nodeNum);
ELLNODE *ellNStep (ELLNODE *pNode, int nStep);
int ellFind (ELLLIST *pList, ELLNODE *pNode);
void ellFree (ELLLIST *pList);
void ellVerify (ELLLIST *pList);
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 211

Chapter 19: libCom
fdmgr.h

free list
ated in

es. Each
the same
19.7 fdmgr.h
File Descriptor Manager. A C and a C++ implementation is provided. Not currently documented.

19.8 freeList.h
This library can be used to allocate and free fixed size memory elements. Free elements are maintained on a
rather then being returned to the heap via calls to free. When it is necessary to call malloc, memory is alloc
multiples of the element size.

void freeListInitPvt(void **ppvt,int size,int nmalloc);
void *freeListCalloc(void *pvt);
void *freeListMalloc(void *pvt);
void freeListFree(void *pvt,void*pmem);
void freeListCleanup(void *pvt);
size_t freeListItemsAvail(void *pvt);

where

pvt - For private use by library. Caller must provide a "void *pvt"
size - Size in bytes of each element. Note that all elements must be same size
nmalloc - Number of elements to allocate when regular malloc must be called.

19.9 gpHash.h
This library provides a general purpose hash table for character strings. The hash table contains tableSize entri
entry is a list of members that hash to the same value. The user can maintain separate directories which share
table by having a different pvtid for each directory.

typedef struct{
 ELLNODE node;
 const char *name; /*address of name placed in directory*/
 void *pvtid; /*private name for subsystem user*/
 void *userPvt; /*private for user*/
} GPHENTRY;

/*tableSize must be power of 2 in range 256 to 65536*/
void gphInitPvt(void **ppvt,int tableSize);
GPHENTRY *gphFind(void *pvt,const char *name,void *pvtid);
GPHENTRY *gphAdd(void *pvt,const char *name,void *pvtid);
void gphDelete(void *pvt,const char *name,void *pvtid);
void gphFreeMem(void *pvt);
void gphDump(void *pvt);

where

pvt - For private use by library. Caller must provide a "void *pvt"
name - The character string that will be hashed and added to table.
pvtid - The name plus value of this pointer constitute a unique entry.
212 EPICS IOC Application Developer’s Guide

Chapter 19: libCom
logClient
19.10 logClient
The iocLog client. Thus does not really belong in libCom.

19.11 macLib.h
This is a general purpose macro substitution library. It is used for all macro substitution in base.

long macCreateHandle(
 MAC_HANDLE **handle, /* address of variable to receive pointer */
 /* to new macro substitution context */
 char *pairs[] /* pointer to NULL-terminated array of */
 /* {name,value} pair strings; a NULL */
 /* value implies undefined; a NULL */
 /* argument implies no macros */
);

void macSuppressWarning(
 MAC_HANDLE *handle, /* opaque handle */
 int falseTrue /*0 means ussue, 1 means suppress*/
);

/*following returns #chars copied, <0 if any macros are undefined*/
long macExpandString(
 MAC_HANDLE *handle, /* opaque handle */
 char *src, /* source string */
 char *dest, /* destination string */
 long maxlen /* maximum number of characters to copy */
 /* to destination string */
);

/*following returns length of value */
long macPutValue(
 MAC_HANDLE *handle, /* opaque handle */
 char *name, /* macro name */
 char *value /* macro value */
);

/*following returns #chars copied (<0 if undefined) */
long macGetValue(
 MAC_HANDLE *handle, /* opaque handle */
 char *name, /* macro name or reference */
 char *value, /* string to receive macro value or name */
 /* argument if macro is undefined */
 long maxlen /* maximum number of characters to copy */
 /* to value */
);

long macDeleteHandle(MAC_HANDLE *handle);
long macPushScope(MAC_HANDLE *handle);
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 213

Chapter 19: libCom
misc

plain

 by the

nt. All
ise.
long macPopScope(MAC_HANDLE *handle);
long macReportMacros(MAC_HANDLE *handle);

/* Function prototypes (utility library) */

/*following returns #defns encountered; <0 = ERROR */
long macParseDefns(
 MAC_HANDLE *handle, /* opaque handle; can be NULL if default */
 /* special characters are to be used */
 char *defns, /* macro definitions in "a=xxx,b=yyy" */
 /* format */
 char **pairs[] /* address of variable to receive pointer */
 /* to NULL-terminated array of {name, */
 /* value} pair strings; all storage is */
 /* allocated contiguously */
);

/*following returns #macros defined; <0 = ERROR */
long macInstallMacros(MAC_HANDLE *handle,
 char *pairs[] /* pointer to NULL-terminated array of */
 /* {name,value} pair strings; a NULL */
 /* value implies undefined; a NULL */
 /* argument implies no macros */
);

NOTE: The directory <base>/src/libCom/macLib contains two files macLibNOTES and macLibREADME that ex
this library.

19.12 misc

19.12.1 aToIPAddr

The function prototype appears in osiSock.h

aToIPAddr fills in the structure pointed to by the pIp argument with the Internet address and portnumber specified

pAddrString argument.

Three forms of pAddrString are accepted:

1. n.n.n.n:p
The Internet address of the host, specified as four numbers separated by periods.

2. xxxxxxxx:p
The Internet address number of the host, specified as a single number.

3. hostname:p
The Internet host name of the host.

In all cases the ‘:p’ may be omitted in which case the port number is set to the value of the defaultPort argume
numbers are read in base 16 if they begin with ‘0x’ or ‘0X’, in base 8 if they begin with ‘0’, and in base 10 otherw
214 EPICS IOC Application Developer’s Guide

Chapter 19: libCom
misc

or the

as been

tring

finitions
has a
19.12.2 adjustment.h
size_t adjustToWorstCaseAlignment(size_t size);

adjustToWorstCaseAlignment returns a value >= size that an exact multiple of the worst case alignment f
architecture on which the routine is executed.

19.12.3 cantProceed.h
void cantProceed(const char *errorMessage);
void *callocMustSucceed(size_t count, size_t size,const char *errorMessage);
void *mallocMustSucceed(size_t size, const char *errorMessage);

These routines are provided for code that can’t proceed when an error occurs.cantProceed issues the error message
and does not return.callocMustSucceed and mallocMustSucceed can be used in place ofcalloc and
malloc . If they fail they just callcantProceed .

19.12.4 dbDefs.h

This contains definitions that are still used in base but should not be. Hopefully these all go away some day. This h
the hope for about ten years.

19.12.5 epicsString.h
int dbTranslateEscape(char *s,const char *ct);

dbTranslateEscape copiesct to s while substituting escape sequences. It returns the length of the resultant s
(may contain nulls).

19.12.6 epicsTypes.h
typedef char epicsInt8;
typedef unsigned char epicsUInt8;
typedef short epicsInt16;
typedef unsigned short epicsUInt16;
typedef epicsUInt16 epicsEnum16;
typedef int epicsInt32;
typedef unsigned epicsUInt32;
typedef float epicsFloat32;
typedef double epicsFloat64;
typedef unsigned long epicsIndex;
typedef epicsInt32 epicsStatus;

epicsTypes.h contains a number of definitions that provide architecture independent data types. So far the de
provided in this header file have worked on all architectures. In addition to the above definitions epicsTypes.h
number of definitions for displaying the types and other usefull definitions. See the header file for details.

19.12.7 gsd_sync_defs.h

Not documented.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 215

Chapter 19: libCom
timer.h

s not

s
ot be

callback
19.12.8 locationException.h

A C++ template. Not documented. This should be in cxxTemplates.

19.12.9 shareLib.

This is the header file for the "decorated names" that appear in header files, e.g.

epicsShareFunc int epicsShareAPI a_func (int arg)

This is used for creating DLLs for windows. Hopefully a way can be found to generated win32 DLLs which doe
require decorated names.

19.12.10 truncateFile.h
enum TF_RETURN {TF_OK=0, TF_ERROR=1};
TF_RETURN truncateFile
const char *pFileName, /*name (and optionally path) of file*/
unsigned size);

where

pFileName - name (and optionally path) of file

truncateFile truncates the file to the specified size.truncate is not used because it is not portable. It return
TF_OK if the file is less than size bytes or if it was successfully truncated. It returns TF_ERROR if the file could n
truncated.

19.12.11 unixFileName.h

Specifies OSI_PATH_LIST_SEPARATOR and OSI_PATH_SEPARATOR

19.13 timer.h
This defines and implements osiTimer, which implements the timers used by base. For example the database
facility uses osiTimer. Not documented except in the header file.
216 EPICS IOC Application Developer’s Guide

cture of

h of the
ese files
Chapter 20: libCom OSI libraries

20.1 Overview
Directory <base>/src/libCom/osi contains code for implementing operating system independent code. The stru
this directory is:

osi/
 osi*.h
 *.cpp - A few generic c++ implementations
 os/
 Linux/
 RTEMS/
 WIN32/
 cygwin32/
 default/
 posix/
 solaris/
 vxWorks/
NOTE: Other systems also have a directory but only these are currently supported.

The osi directory contains header files that start with "osi". These contain the definitions used by user code. Eac
directories under osi/os contain architecture dependent code. Such code has names like osd*.h and osd*.c. Th
contain operating system dependent headers and sources.

The rules for installing header files residing under libCom/osi are:

• Files in osi are installed into <top>/include

• Files in osi/os/* are installed into <top>/include/os/<arch>.The search order for locating a file is:

• libCom/osi/os/<arch>

• libCom/osi/os/posix

• libCom/osi/os/default

When compiling the search order for locating header files is:

• . - the current directory

• <top>/os/<arch>

• <top>/include

• libCom/*

The search order for locating source files is:

• libCom/osi/os/<arch>

• libCom/osi/os/posix

• libCom/osi/os/default

• libCom/*

NOTE: libCom/osi/os/* contains files osiFileName.h and osiSock.h I dont think these belong!!
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 217

Chapter 20: libCom OSI libraries
epicsAssert.h

e, and
enerate a
, and on
.

gistry,
e. If the

locate
20.2 epicsAssert.h
This is a replacement dor ANSI C’s assert. ,Id assert fails, it calls errlog indicating the program’s author, file nam
line number. Under each OS there are specialized instructions assisting the user to diagnose the problem and g
good bug report. For instance, under vxWorks, there are instructions concerning how to generate a stack trace
posix there are instructions about saving the core file. After printing the message the calling thread is suspended

20.3 osiEvent.h
class osiEvent {
public:
 osiEvent ();
 ~osiEvent ();
 void signal ();
 void wait (); /* blocks until full */
 bool wait (double timeOut); /* false if empty at time out */
 bool tryWait (); /* false if empty */
 void show (unsigned level) const;
 class invalidSemaphore {}; /* exception */
 class noMemory {}; /* exception */
private:
 ...

This is a C++ wrapper for semBinary, which is defined in osiSem.h

20.4 osiFindGlobalSymbol.h
void * osiFindGlobalSymbol(const char *name);

vxWorks provides a function symFindByName, which finds and returns the address of global variables. The re
described in the next chapter, provides an alternative but also requires extra work by iocCore and/or user cod
registry is asked for a name that has not been registered, it calls osiFindGlobalSymbol. If osiFindGlobalSymbol can
the global symbol it returns the address, otherwise it returns null.

On vxWorks osiFindGlobalSymbol calls symFindByName.

A default version just returns null, i.e. it always fails.

20.5 osiInterrupt.h
int interruptLock();

Method Meaning

osiFindGlobalSymbol Return the address of the global variable name
218 EPICS IOC Application Developer’s Guide

Chapter 20: libCom OSI libraries
osiMutex.h

n which
void interruptUnlock(int key);
int interruptIsInterruptContext();
void interruptContextMessage(const char *message);

A vxWorks specific version is provided. It maps directly to intLib calls.

An RTEMS version is provided that maps to rtems_ calls.

A default version is provided that uses a global semaphore to lock. This version is intended for operating systems i
iocCore will run as a multithreaded process. The global semaphore is thus only global within the process.

NOTES:

The generic version is intended for use on all except real time operating systems.

• The vxWorks type implementation will not produce the desired result on symetric multiprocessing systems.

• The reason this is needed is:

• callbackRequest and scanOnce can be issued from interrupt level.

• The errlog routines can be called while at interrupt level.

20.6 osiMutex.h
class epicsShareClass osiMutex {
public:
 osiMutex ();
 ~osiMutex ();
 void lock () const; /* blocks until success */
 bool lock (double timeOut) const; /* true if successful */
 bool tryLock () const; /* true if successful */
 void unlock () const;
 void show (unsigned level) const;

 class invalidSemaphore {}; /* exception */
 class noMemory {}; /* exception */
private:
 mutable semMutexId id;
};

Method Meaning

interruptLock Lock interrupts and return a key to be passed to interruptUnlock
To lock the following is done.
 int key;
 ...
 key = interruptLock();
 ...
 interruptUnlock(key);

interruptUnlock Unlock interrupts.

interruptIsInterruptContext Return (true, false) if current context is interrupt context.

interruptContextMessage Generate a message while interrupt context is true.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 219

Chapter 20: libCom OSI libraries
osiPoolStatus.h
This is a wrapper c++ class for semMutex described in osiSem.

20.7 osiPoolStatus.h
int osiSufficentSpaceInPool(void);

This determines if enough free memory exists to continue.

A vxWorks version returns (true,false) if memFindMax returns (>100000, <=100000) bytes.

The defualt version always returns true.

20.8 osiProcess.h
typedef enum osiGetUserNameReturn {
 osiGetUserNameFail,
 osiGetUserNameSuccess
}osiGetUserNameReturn;

osiGetUserNameReturn osiGetUserName (char *pBuf, unsigned bufSize);

/*
 * Spawn detached process with named executable, but return
 * osiSpawnDetachedProcessNoSupport if the local OS does not
 * support heavy weight processes.
 */
typedef enum osiSpawnDetachedProcessReturn {
 osiSpawnDetachedProcessFail,
 osiSpawnDetachedProcessSuccess,
 osiSpawnDetachedProcessNoSupport
}osiSpawnDetachedProcessReturn;

osiSpawnDetachedProcessReturn osiSpawnDetachedProcess(
 const char *pProcessName, const char *pBaseExecutableName);

Not documented.

Method Meaning

osiSufficentSpaceInPool Return (true,false) if there is sufficient free memory.
220 EPICS IOC Application Developer’s Guide

Chapter 20: libCom OSI libraries
osiRing.h

es the
20.9 osiRing.h
ringId ringCreate(int nbytes);
void ringDelete(ringId id);
int ringGet(ringId id, char *value,int nbytes);
int ringPut(ringId id, char *value,int nbytes);
void ringFlush(ringId id);
int ringFreeBytes(ringId id);
int ringUsedBytes(ringId id);
int ringSize(ringId id);
int ringIsEmpty(ringId id);
int ringIsFull(ringId id);

osiRing has the following properties.

• For a single writer it is not necessary to lock puts.

• For a single reader it is not necessary to lock gets.

• ringFlush should only be used if both gets and puts are locked.

A vxWorks specific version is provided that maps directly to rngLib calls. The vxWorks implementation guarante
above properties.

A default version is provided that works on all platforms and also guarantees the above properties.

20.10 osiSem.h
typedef void *semBinaryId;
typedef enum {semTakeOK,semTakeTimeout,semTakeError} semTakeStatus;
typedef enum {semEmpty,semFull} semInitialState;

semBinaryId semBinaryCreate(semInitialState initialState);

Method Meaning

ringCreate Create a new ring buffer of size nbytes. The returned ringId is passed to the other ring methods.

ringDelete Delete the ring buffer and free any associated memory.

ringGet Move up to nbytes from the ring buffer to value. The number of bytes actually moved is returned.

ringPut Move up to nbytes from value to the ring buffer. The number of bytes actually moved is returned.

ringFlush Make the ring buffer empty.

ringFreeBytes Return the number of free bytes in the ring buffer.

ringUsedBytes Return the number of bytes currently stored in the ring buffer.

ringSize Return the size of the ring buffer, i.e., nbytes specified in the call to ringCreate.

ringIsEmpty Return (true, false) if the ring buffer is currently empty.

ringIsFull Return (true, false) if the ring buffer is currently empty.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 221

Chapter 20: libCom OSI libraries
osiSem.h
semBinaryId semBinaryMustCreate (semInitialState initialState);
void semBinaryDestroy(semBinaryId id);
void semBinaryGive(semBinaryId id);
semTakeStatus semBinaryTake(semBinaryId id);
void semBinaryMustTake(ID);
semTakeStatus semBinaryTakeTimeout(semBinaryId id, double timeOut);
semTakeStatus semBinaryTakeNoWait(semBinaryId id);
void semBinaryShow(semBinaryId id, unsigned int level);

typedef void *semMutexId;
semMutexId semMutexCreate(void);
semMutexId semMutexMustCreate (void);
void semMutexDestroy(semMutexId id);
void semMutexGive(semMutexId id);
semTakeStatus semMutexTake(semMutexId id);
void semMutexMustTake(semMutexId id);
semTakeStatus semMutexTakeTimeout(semMutexId id, double timeOut);
semTakeStatus semMutexTakeNoWait(semMutexId id);
void epicsShareAPI semMutexShow(semMutexId id,unsigned int level
);

Method Meaning

semBinaryCreate
semBinaryMustCreate

Creates a binary semaphore. It can be created empty or full. If it is created empty then a semTake
issued before a semGive will block. If created full then the first semTake will always succeed.
Multiple semGives may be issued between semTakes but have the same effect as a single
semGive.
 If semBinaryCreate is called the return value must be checked. A return value of 0 indicates
failure. semBinaryMustCreate does not return if it fails.

semBinaryDestroy Remove the semaphore and any resources it uses. Any further use of the semaphore result in
unknown (most certainly bad) behavior. No outstanding take can be active when this call is made.

semBinaryGive Set the semaphore full, i.e. ensures that the next or current call to semBinaryTake completes.

semBinaryTake
 semBinaryMustTake

Wait until the semaphore is full.
If semBinaryTake is issued then the return value must be checked. It will be either semTakeOK
or semTakeError. semBinaryMustTake will not return if an error is detected.

semBinaryTakeTimeout
 semBinaryTakeNoWait

Similar to semBinaryTake except that if the semaphore is empty the call completes after the
specified timeout (semBinaryTakeTimeout) or immediately (semBinaryTakeNoWait). If the
return value is semTakeOK the semaphore was full. If the semaphore was never full during the
timeout period, the return value is semTakeTimeout.

semBinaryShow Display information about the semaphore. The information displayed is architecture dependent.

semMutexCreate
 semMutexMustCreate

Creates a mutual exclusion semaphore.
If semMutexCreate is called the return value must be checked. A return value of 0 indicates
failure. semMutexMustCreate does not return is it fails.

semMutexDestroy Remove the semaphore and any resources it uses. Any further use of the semaphore result in
unknown (most certainly bad) results. No outstanding takes can be active when this call is made.

semMutexGive Called when the owner thread is done with a resource . If a thread issues recursive takes, there
must be a semMutexGive for each take.
222 EPICS IOC Application Developer’s Guide

Chapter 20: libCom OSI libraries
osiSem.h

s usage
e or more

clusion
ecursive
Two types of semaphores are provided: Binary and Mutex.

The primary use of binary semaphores is for synchronization. They could also be used for mutual exclusion but thi
is discouraged. A example of using a binary semaphore is a consumer thread that processes requests from on
producer threads. For example:

• Create the consumer thread:
 semBinaryId id;
 ...
 id = semBinaryMustCreate(semEmpty);
 threadCreate("consumer"...

• The consumer thread has code containing:
 while(1) {
 semBinaryMustTake(id);
 while(/*more work*/) {
 /*process work*/
 }
 }

• Producers create requests and issue the statement:
 semGive(id);

Mutual exclusion semaphores are for situations requiring mutually exclusive access to resources. A mutual ex
semaphore may be taken recursively, i.e. can be taken more than once by the owner thread before releasing it. R
takes are useful for a set of routines that call each other while working on a mutually exclusive resource.

The typical use of a mutual exclusion semaphore is:

 semMutexId id;
 ...
 id = semMutexMustCreate();
 ...
 semMutexMustTake(id);
 /* process resource */
 semMutexGive(id);

NOTES: Mutual exclusion semaphores

• MUST implement recursive locking

• SHOULD implement priority inheritance and be deletion safe

A posix version is implemented via pthreads.

semMutexTake
semMutexMustTake

Wait until the resource is free. After a successful take additional , i.e. recursive, takes of any type
can be issued but each must have an associated semMutexGive.
If semMutexTake is issued then the return value must be checked. It will be either semTakeOK or
semTakeError. semMutexMustTake will not return if an error is detected.

semMutexTakeTimeout
 semMutexTakeNoWait

Similar to semMutexTake except that, if the resource is owned by another thread, the call
completes after the specified timeout (semMutexTakeTimeout) or immediately
(semMutexTakeNoWait). If the return value is semTakeOK the caller owns the resource. If the
resource is never free during the timeout period, the return value is semTakeTimeout.

semMutexShow Display information about the semaphore. The results are architecture dependent.

Method Meaning
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 223

Chapter 20: libCom OSI libraries
osiSigPipeIgnore.h
20.11 osiSigPipeIgnore.h
void installSigPipeIgnore (void);

Not documented.

20.12 osiSock.h
See the header file in <base>/src/libCom/osi.

20.13 osiThread.h
typedef void (*THREADFUNC)(void *parm);

static const unsigned threadPriorityMax = 99;
static const unsigned threadPriorityMin = 0;

/*some generic values */
static const unsigned threadPriorityLow = 10;
static const unsigned threadPriorityMedium = 50;
static const unsigned threadPriorityHigh = 90;

/*some iocCore specific values */
static const unsigned threadPriorityChannelAccessServer = 30;
static const unsigned threadPriorityScanLow = 60;
static const unsigned threadPriorityScanHigh = 70;

/* stack sizes for each stackSizeClass are implementation and CPU dependent */
typedef enum {
 threadStackSmall, threadStackMedium, threadStackBig
} threadStackSizeClass;

typedef enum {tbsFail, tbsSuccess} threadBoolStatus;

unsigned int threadGetStackSize(threadStackSizeClass size);

typedef int threadOnceId;
#define OSITHREAD_ONCE_INIT 0
void threadOnce(threadOnceId *id, THREADFUNC func, void *arg);

void threadInit(void);
void threadExitMain(void);

/* (threadId)0 is guaranteed to be an invalid thread id */
typedef void *threadId;
threadId threadCreate(const char *name,
 unsigned int priority, unsigned int stackSize,
 THREADFUNC funptr,void *parm);
224 EPICS IOC Application Developer’s Guide

Chapter 20: libCom OSI libraries
osiThread.h
void threadSuspendSelf(void);
void threadResume(threadId id);
unsigned int threadGetPriority(threadId id);
unsigned int threadGetPrioritySelf();
void threadSetPriority(threadId id,unsigned int priority);
threadBoolStatus threadHighestPriorityLevelBelow(
 unsigned int priority, unsigned *pPriorityJustBelow);
threadBoolStatus threadLowestPriorityLevelAbove(
 unsigned int priority, unsigned *pPriorityJustAbove);
int threadIsEqual(threadId id1, threadId id2);
int threadIsSuspended(threadId id);
void threadSleep(double seconds);
threadId threadGetIdSelf(void);
threadId threadGetId(const char *name);

const char *threadGetNameSelf(void);

/* For threadGetName name is guaranteed to be null terminated */
/* size is size of buffer to hold name (including terminator */
/* Failure results in a null string stored in name */
void threadGetName(threadId id, char *name,size_t size);

void threadShowAll(unsigned int level);
void threadShow(threadId id,unsigned int level);

typedef void * threadVarId;
threadVarId threadPrivateCreate (void);
void threadPrivateDelete (threadVarId id);
void threadPrivateSet (threadVarId, void *);
void * threadPrivateGet (threadVarId);

Method Meaning

threadGetStackSize Get a stack size value that can be given to threadCreate. Three sizes can be requested: small,
medium, and large.

threadOnce This is used as follows:
 void myInitFunc(void * arg)
 {
 ...
 }
 ...
 threadOnceId onceFlag = OSITHREAD_ONCE_INIT;
 ...
 threadOnce(&onceFlag,myInitFunc,(void *)myParm)
For each unique threadOnceId, threadOnce gurantees
 1) myInitFunc is called only once.
 2) myInitFunc completes before any threadOnce call completes.

threadInit This is called automatically by the thread implementation. NOTE: This should not appear in
osiThread.h

threadExitMain If the main routine is done but wants to let other threads run it can call this routine. This should
be the last call in main, except the final return. On most systems threadExitMain never returns.
This must only be called by the main thread.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 225

Chapter 20: libCom OSI libraries
osiThread.h
threadCreate Create a new thread. The use made of the name, priority, and stacksize arguments is
implementation dependent. Some implementation may ignore one or more of these. The funptr
argument specifies a function that implements the thread and parm is the single argument passed
to funptr. A thread terminates when funptr returns.

threadSuspendSelf This causes the calling thread to suspend. The only way it can resume is for another thread to
call threadResume.

threadResume Resume a suspended thread. Only do this if you know that it is safe to resume a suspended
thread.threadGetPriority

threadGetPriority Get the priority of the specified thread.

threadGetPrioritySelf Get the priority of this thread.

threadSetPriority Set a new priority for the specified thread. Note that the result is implementation dependent. See
comments about priorities above.

threadHighestPriority
LevelBelow

Get a priority that just lower than the specified priority.

threadLowestPriority
LevelAbove

Get a priority that is just above the specified priority.

threadIsEqual Compares two threadIds and returns (0,1) if they (are not, are) the same.

threadIsSuspended BAD NAME. taskwd needs this call. It really means: Is there something wrong with this thread?
This could mean suspended or no longer exists or etc. It is a problem because it is
implementation dependent.

threadSleep Sleep for the specified period of time, i.e. sleep without using the cpu.

threadGetIdSelf Get the threadId of the calling thread.

threadGetId Get the threadId if the specified thread. A return of 0 means that no thread was found with the
specified name.

threadGetNameSelf Get the name of the calling thread.

threadGetName Get the name of the specified thread. The value is copied to a caller specified buffer so that if the
thread terminates the caller is not left with a pointer to something that may no longer exist.

threadShowAll Display info about all threads.

threadShow Display info about the specified thread.

threadPrivateCreate Thread private variables are intended for use by legacy libraries written for a single threaded
environment and which uses a global variable to store private data. The only code in base that
currently needs this facility is channel access. A library that needs a private variable should
make exactly one call to threadPrivateCreate. Each thread should call threadPrivateSet when the
thread is created. Each library routine can call threadPrivateGet each time it is called.

threadPrivateDelete Delete a thread private variable.

threadPrivateSet Set the value for a thread private variable.

threadPrivateGet Get the value of a thread private variable, the value is the value set by the call to threadPrivateSet
that was made by the same thread. If called before threadPrivateSet it returns 0.

Method Meaning
226 EPICS IOC Application Developer’s Guide

Chapter 20: libCom OSI libraries
osiTime.h

variety
rsion is

rns. It
l part of

 once.

utines.
uld be
leave

stants
into a

ium, and
ack size
expected

ans no
to bad
osiThread is meant as a somewhat minimal interface for multithread applications. It can be implemented on a wide
of systems with the restriction that the system MUST support a multithreaded environment. A POSIX pthreads ve
provided

The interface provides the following thread facilities, with restrictions as noted:

• Life cycle - A thread starts life as a result of a call to threadCreate. It terminates when the thread function retu
should not return until it has released all resources it uses. If a thread is expected to terminate as a natura
it’s life cycle then the thread function must return.

• threadOnce - This provides the ability to have an initialization function that is guranteed to be called exactly

• main - On systems requiring a main routine, threadInit MUST be called before any thread or semaphore ro
Since the errlog facility, which is used by many components of libCom, calls threadCreate, threadInit sho
called before any other routines supplied with epics base. If a main routine finishes it’s work but wants to
other threads running it can call threadExitMain, which should be the last statement in main.

• Priorities - Priorities range between 0 and 99 with a higher number meaning higher priority. A number of con
are defined for iocCore specific threads. The underlying implementation may collapse the range 0 to 99
smaller range; even a single priority. User code should never use priorities to guarantee correct behavior.

• Stack Size - threadCreate accepts a stack size parameter. Three generic sizes are available: small, med
large. Portable code should always use one of the generic sizes. Some implementation may ignore the st
request and use a system default instead. Virtual memory systems providing generous stack sizes can be
to use the system default.

• threadId - This is given a value as a result of a call to threadInit or threadCreate. A value of 0 always me
thread. If a threadId is used for a thread that has terminated the result is not defined (but will normally lead
things happening). Thus code that looks after other threads MUST be aware of threads terminating.

20.14 osiTime.h
This is a replacement for tsLib.h. Currently only documented in the header file.

20.15 tsStamp.h
This is a set of C functions to access osiTime. Currently only documented via the header file.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 227

Chapter 20: libCom OSI libraries
tsStamp.h
228 EPICS IOC Application Developer’s Guide

ce on
is that

ing to

field are
Chapter 21: Registry

Under vxWorks osiFindGlobalSymbol can be used to dynamically bind to record, device, and driver support. Sin
some systems this always returns failure, a registry facility is provided to implement the binding. The basic idea
any storage meant to be "globally" accessable must be registered before it can be accessed by other code.

A perl script is provided that reads the xxxApp.dbd file and produces a c file containing a routine
registerRecordDeviceDriver, which registers all record/device/driver support defined in the xxxApp.dbd file.

21.1 Registry.h
int registryAdd(void *registryID,const char *name,void *data);
void *registryFind(void *registryID,const char *name);
int registrySetTableSize(int size);
void registryFree();
int registryDump(void);

This is the code which does the work. Each different set of things to register must have it’s own unique ID. Everyth
be registered is stored in the same gpHash table.

Routine registrySetTableSize is provided in case the default hash table size (1024 entries) is not sufficient.

21.2 registryRecordType.h
typedef int (*computeSizeOffset)(dbRecordType *pdbRecordType);

typedef struct recordTypeLocation {
struct rset *prset;
computeSizeOffset sizeOffset;
}recordTypeLocation;

int registryRecordTypeAdd(const char *name,recordTypeLocation *prtl);
recordTypeLocation *registryRecordTypeFind(const char *name);

Some features:

• Access to both the record support entry table and to the routine which computes the size and offset of each
provided

• Type safe access is provided.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 229

Chapter 21: Registry
registryDeviceSupport.h

r.pl or
21.3 registryDeviceSupport.h
int registryDeviceSupportAdd(const char *name,struct dset *pdset)
struct dset *registryDeviceSupportFind(const char *name);

This provides access to the device support entry table.

21.4 registryDriverSupport.h
int registryDriverSupportAdd(const char *name,struct drvet *pdrvet);
struct drvet *registryDriverSupportFind(const char *name);

/* The following function is generated by registerRecordDeviceDriver/pl */
int registerRecordDeviceDriver(DBBASE *pdbbase);

This provides access to the driver support table.

21.5 registryFunction.h
typedef void (*REGISTRYFUNCTION)(void);
/* c interface definitions */
int registryFunctionAdd(const char *name,REGISTRYFUNCTION func);
REGISTRYFUNCTION registryFunctionFind(const char *name);

This registers a function. This is used for subroutine like records.

21.6 registerRecordDeviceDriver.c
A version of this is provided for vxWorks. This version makes it unnecessary to use registerRecordDeviceDrive
register other external names. Thus for vxWorks everything can work almost exactly like it did in release 3.13.x

21.7 registerRecordDeviceDriver.pl
This is the perl script which creates a c source file that registers record/device/driver support. Make rules:

• execute this script using the dbd file created by dbExpand

• compile the resulting C file

• Make the object file part of the xxxLib file
230 EPICS IOC Application Developer’s Guide

pers but
the IOC
Chapter 22: Database Structures

22.1 Overview
This chapter describes the internal structures describing an IOC database. It is of interest to EPICS system develo
serious application developers may also find it useful. This chapter is intended to make it easier to understand
source listings. It also gives a list of the header files used by IOC Code.

22.2 Include Files
This section lists the files in base/include that are of most interest to IOC Application Developers:

alarm.h alarmString.h - These files contain definitions for all alarm status and severity values.

cadef.h caerr.h caeventmask.h- These files are of interest to anyone writing channel access clients.

callback.h - The definitions for the General Purpose callback system.

dbAccess.h- Definitions for the runtime database access routines.

dbBase.h- Definitions for the structures used to store an EPICS database.

dbDefs.h - A catchall file for definitions that have no other reasonable place to appear.

dbFldTypes.h - Definitions forDBF_xxx andDBR_xxx types.

dbScan.h- Definitions for the scanning system.

dbStaticLib.h - The static databases access system.

db_access.h db_addr.h- Old database access.

devLib.h - The device support library

devSup.h - Device Support Modules

drvSup.h - Driver Support Modules

ellLib.h - A library that is provides the same functions as the vxWorkslstLib . All routines start withell instead of
lst . TheellLib routines work on both IOCs and on UNIX.

epicsPrint.h errMdef.h - EPICS error handling system

fast_lock.h - The FASTLOCK routines.

freeList.h - A general purpose free list facility

gpHash.h- A general purpose hash library.

guigroup.h - The guigroup definitions.

initHooks.h - Definitions used byinitHooks .c routines.
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 231

Chapter 22: Database Structures
Include Files
link.h - Link definitions

module_types.h- VME hardware configuration.SHOULD NOT BE USED BY NEW SUPPORT.

recSup.h - The record global routines.

special.h - Definitions for special fields, i.e.SPC_xxx.

task_params.h- Definitions for task priorities, stack space, etc.

taskwd.h - Task Watchdog System

tsDefs.h - Time stamp routines. Will also have to look atbase /src /libCom /tsSubr .c
232 EPICS IOC Application Developer’s Guide

Chapter 22: Database Structures
Structures
22.3 Structures

dbBase
 menuList
 recordTypeList
 drvList
 bptList
 pathPvt
 ppvd
 pgpHash
 ignoreMissingMenus

dbMenu
 node
 name
 nChoice
 papChoiceName
 papChoiceValue

dbRecordType
 node
 attributeList
 recList
 devList
 name
 no_fields
 no_prompt
 link_ind
 papsortFldName
 sortFldInd
 pvalFldDes
 indvalFlddes
 papFldDes
 ...

drvSup
 node
 name
 pdrvet

brkTable
 node
 name
 number
 papBrkInt

brkInt
 raw
 slope
 eng

dbFldDes
 prompt
 name
 extra
 pdbRecordType
 indRecordType
 special
 field_type
 process_passive
 base
 promptgroup
 interest
 as_level
 initial
 ...

devSup
 node
 name
 pdset
 link_type

dbRecordNode
 node
 precord
 recordname
 visible
EPICS Release: R3.14.0alpha1
EPICS IOC Application Developer’s Guide 233

Chapter 22: Database Structures
Structures
234 EPICS IOC Application Developer’s Guide

INDEX

A

AB_IO. 69
Access Security. 89
addpath . 58, 60
adjustToWorstCaseAlignment 215
Alloc/Free DBENTRY 155
ANSI . 40
asAddClient. 98
asAddMember. 98
asChangeClient . 99
asChangeGroup. 98
ascheck . 92
asCheckGet(. 99
asCheckPut . 99
asCompute. 100
asComputeAllAsg. 100
asComputeAsg . 100
asdbdump . 103, 113
asDbGetAsl . 102
asDbGetMemberPvt . 102
asDump(. 100
asDumpHag. 100
asDumpHash. 101
asDumpMem. 101
asDumpRules . 100
asDumpUag. 100
ASG. 91

. 90
asGetClientPvt . 99
asGetMemberPvt. 98
asInit . 92, 102, 113
asInitAsyn . 102
asInitFile . 97
asInitFP . 97
asInitialize. 97
ASL. 90
asl - field definition rules. 62
asl_level - field definition 63
asphag . 103, 113
aspmem . 103, 114
asprules . 103, 114
aspuag . 103, 113
asPutClientPvt. 99
asPutMemberPvt . 98
asPvt in DBADDR . 171
asRegisterClientCallback 99

asRemoveClient . 99
asRemoveMember . 98
asSetFilename 92, 102, 113
asSetSubstitutions 92, 102
asSubInit . 93, 103
asSubProcess. 93, 103
astac. 102
asynchronous device support example 145

B

base - field definition. 64
base - field definition rules 62
BBGPIB_IO . 70
Bin install files . 38
BIN_INSTALLS . 38, 43
BITBUS_IO . 69
BPTS. 29
breakpoint table - database definition 67
Breakpoint Tables . 29, 71
Breakpoints . 109
breaktable . 58
Build Facility . 25

C

ca_channel_status . 114
Cached Puts. 55
CALC . 92
calcPerform. 209
CALLBACK . 193
callbackGetUser . 194
callbackInit . 194
callbackRequest . 194
callbackRequestProcessCallback 194
callbackSetCallback . 194
callbackSetPriority . 194
callbackSetQueueSize. 84, 196
callbackSetUser. 194
callocMustSucceed . 215
CAMAC_IO . 69
cantProceed. 215
casr . 114
CFLAGS . 40
Channel Access. 17
channel access link . 47
Channel Access Monitors 183
checkAlarms . 133
choice . 58
choice_string - device definition. 67
CLASSES . 42
clean . 28
CMPLR. 40
comment - Database Definitions. 60
computeSizeOffset . 229
CONFIG . 44
CONFIG.CrossCommon. 43
CONFIG_ADDONS. 43
CONFIG_BASE . 43
CONFIG_BASE_VERSION 43
235 EPICS IOC Application Developer’s Guide

CONFIG_COMMON . 43
CONFIG_ENV . 43
CONFIG_SITE . 44
CONFIG_SITE_ENV. 44
Configure. 43
configure/os File . 44
configure/tool File. 44
CONSTANT . 69
constant link . 47
coreRelease . 116
cp.pl. 44
CROSS_OP. 40
CROSS_WARN . 40
cvt_dbaddr - Record Support Routine 136
cvtBitsToUlong . 210
cvtCharToString . 210
cvtDoubleToCompactString 210
cvtDoubleToExpString 210
cvtDoubleToString . 209
cvtFloatToCompactString 210
cvtFloatToExpString . 209
cvtFloatToString . 209
cvtLongToHexString. 210
cvtLongToOctalString. 210
cvtLongToString . 210
cvtShortToString . 210
cvtUcharToString . 210
cvtUlongToBits . 210
cvtUlongToString . 210
cvtUshortToString. 210

D

database access routines - List of 172
Database Definition. 30–31
Database Definition File 57
database definitions. 57
Database Files . 31
Database Format - Summary 57
database link . 47
Database Link Guidelines. 50
Database Links . 47
Database Locking . 48
Database Scanning . 49
DB. 31
DB_MAX_CHOICES. 169
db_post_events . 183
dba. 108
dbAccess.h . 169
dbAdd . 171
dbAddPath. 156
DBADDR . 171
dbAllocBase . 154
dbAllocEntry. 155
dbAllocForm. 163
dbap. 110
dbAsciiToMenuH . 73
dbAsciiToRecordtypeH. 73
dbb. 109
dbBufferSize . 179
dbc. 110
dbCaAddLink . 185

dbCaGetAlarmLimits 186
dbCaGetAttributes . 186
dbCaGetControlLimits 186
dbCaGetGraphicLimits 186
dbCaGetLink. 185
dbCaGetPrecision . 186
dbCaGetSevr . 186
dbCaGetTimeStamp . 186
dbCaGetUnits . 186
dbCaLinkInit . 83, 185
dbCaPutLink . 185
dbcar . 115, 117
dbCaRemoveLink . 185
dbCopyEntry . 156
dbCopyEntryContents. 156
dbCopyRecord . 160
dbCreateRecord. 160
dbCvtLinkToConstant. 163
dbCvtLinkToPvlink. 163
dbd. 109
dbDefs.h . 169
dbDeleteRecord. 160
DBDEXPAND . 30
DBDINSTALL . 31
DBDNAME . 30
dbDumpBreaktable . 165
dbDumpDevice . 119, 165
dbDumpDriver . 119, 165
dbDumpFldDes. 119, 165
dbDumpMenu 118–119, 165
dbDumpPath . 165
dbDumpRecord. 165
dbDumpRecords 120, 166
dbDumpRecordType 119, 165
DBE_ALARM . 135
DBE_LOG . 135
DBE_VAL. 135
dbel . 115
dbExpand . 75, 165
DBF_CHAR . 170
DBF_DEVICE . 170
DBF_DOUBLE. 170
DBF_ENUM. 170
DBF_FLOAT . 170
DBF_FWDLINK 70, 170
DBF_INLINK

. 170
DBF_LONG . 170
DBF_MENU. 170
DBF_NOACCESS . 170
DBF_OUTLINK. 170
DBF_SHORT . 170
DBF_UCHAR. 170
DBF_ULONG. 170
DBF_USHORT. 170
DBF_xxx Definitions of Field types. 170
dbFindBrkTable . 165
dbFindField . 161
dbFindMenu . 162
dbFindRecord . 160
dbFindRecordType . 157
dbFinishEntry . 155
dbFirstField . 158
dbFirstRecord . 160
236 EPICS IOC Application Developer’s Guide

dbFirstRecordType . 157
dbFldTypes.h. 169
dbFoundField . 158, 161
dbFreeBase . 155
dbFreeEntry. 155
dbFreeForm. 163
dbGet. 175
dbGetDefaultName . 159
dbGetField. 175
dbGetFieldIndex . 180
dbGetFieldName. 158
dbGetFieldType. 158
dbGetFormPrompt . 163
dbGetFormValue . 163
dbGetLink . 175
dbGetLinkDBFtype. 180
dbGetLinkField . 163
dbGetLinkType . 163
dbGetMenuChoices. 162
dbGetMenuIndex . 162
dbGetMenuIndexFromString 162
dbGetMenuStringFromIndex 162
dbGetNelements . 180
dbGetNFields . 158
dbGetNLinks. 163
dbGetNMenuChoices 162
dbGetNRecords. 160
dbGetNRecordTypes. 157
dbGetPdbAddrFromLink 180
dbGetPrompt . 159
dbGetPromptGroup. 159
dbGetRange. 161
dbGetRecordAttribute. 159
dbGetRecordName . 160
dbGetRecordTypeName 158
dbGetRset . 179
dbGetString. 161
dbgf . 108
dbgrep . 107
dbhcr . 111, 117
dbInitEntry . 155
dbInvisibleRecord . 161
dbior . 111
dbIsDefaultValue. 161
dbIsLinkConnected. 180
dbIsValueField . 179
dbIsVisibleRecord. 161
dbl . 107
dbLoadDatabase . 76
dbLoadRecords . 77
dbLoadTemplate . 77
dbLockGetLockId . 184
dbLockInitRecords . 184
dbLockSetGblLock. 184
dbLockSetGblUnlock 184
dbLockSetMerge. 184
dbLockSetRecordLock 184
dbLockSetSplitSl . 184
dblsr. 117
dbmfFree. 211
dbmfFreeChunks. 211
dbmfInit. 211
dbmfMalloc. 211
dbmfShow. 211

dbNameToAddr. 174
dbNextField. 158
dbNextRecord . 160
dbNextRecordType . 157
dbNotifyAdd . 179
dbNotifyCancel . 179
dbNotifyCompletion . 179
dbnr . 109
dbp. 110
dbPath . 156
dbpf . 108
dbpr . 108
dbProcess . 182
dbPut . 177
dbPutAttribute. 71, 181
dbPutField . 176
dbPutForm. 163
dbPutLink . 176
dbPutMenuIndex. 162
dbPutNotify. 177–178
dbPutRecordAttribute 159
dbPutString . 161
dbPvdDump . 120, 165
dbPvdTableSize. 84
DBR_AL_DOUBLE. 173
DBR_AL_LONG . 173
DBR_CHAR . 173
DBR_CTRL_DOUBLE 173
DBR_CTRL_LONG. 173
DBR_DOUBLE . 173
DBR_ENUM. 173
DBR_ENUM_STRS. 173
dbr_field_type in DBADDR 171
DBR_FLOAT . 173
DBR_GR_DOUBLE. 173
DBR_GR_LONG . 173
DBR_LONG . 173
DBR_PRECISION . 173
DBR_PUT_ACKS 173–174
DBR_PUT_ACKT 173–174
DBR_SHORT . 173
DBR_STATUS . 173
DBR_TIME. 173
DBR_UCHAR . 173
DBR_ULONG . 173
DBR_UNITS. 173
DBR_USHORT. 173
DBR_xxx Database Request Types and Options173
dbReadDatabase . 156
dbReadDatabaseFP . 156
dbReadTest . 78
dbRenameRecord 160–161
dbReportDeviceConfig 165
dbs. 109
dbScan.h . 201
dbScanFwdLink . 182
dbScanLink . 182
dbScanLock. 183
dbScanPassive. 182
dbScanUnlock. 184
dbstat . 110
dbt . 116
dbtgf . 116
dbToMenuH . 72
237 EPICS IOC Application Developer’s Guide

dbToRecordtypeH . 72
dbtpf . 116
dbtpn . 116
dbtr . 109
dbTranslateEscape 59, 61, 215
dbValueSize. 179
dbVerify. 161
dbVerifyForm . 164
dbVisibleRecord . 161
dbWriteBreaktable . 156
dbWriteBreaktableFP 156
dbWriteDevice . 156
dbWriteDeviceFP . 156
dbWriteDriver . 156
dbWriteDriverFP. 156
dbWriteMenu . 156
dbWriteMenuFP . 156
dbWriteRecord . 157
dbWriteRecordFP . 157
dbWriteRecordType . 156
dbWriteRecordTypeFP 156
DCT_FWDLINK . 154
DCT_INLINK. 154
DCT_INTEGER . 154
DCT_LINK_CONSTANT 163
DCT_LINK_DEVICE 163
DCT_LINK_FORM . 163
DCT_LINK_PV . 163
DCT_MENU. 154
DCT_MENUFORM . 154
DCT_NOACCESS . 154
DCT_OUTLINK. 154
DCT_REAL . 154
DCT_STRING . 154
depends . 29
devConnectInterrupt . 190
devCreateMask . 191
devDisableInterruptLevel 190
devDisconnectInterrupt. 190
devEnableInterruptLevel. 190
device . 58
device - database definition. 66
Device Support Entry Table 129
devNmlToDig . 191
devNormalizedGblGetField 191
devRegisterAddress . 189
devUnregisterAddress. 190
DIR . 41
Directory structure . 25
Doc file . 34
DOCS . 35, 42
driver . 58
driver - database definition 67
Driver Support Entry Table Example 150
drvet_name - driver definition. 67
DSET. 129
dset - dbCommon . 143
dset_name - device definition 67
dtyp - dbCommon . 143

E

E2DB_FLAGS . 42
ellAdd . 211
ellConcat . 211
ellCount. 211
ellDelete . 211
ellExtract . 211
ellFind . 211
ellFirst . 211
ellFree . 211
ellGet. 211
ellInit . 211
ellInsert . 211
ellLast . 211
ELLLIST. 211
ellNext. 211
ELLNODE . 211
ellNStep. 211
ellNth. 211
ellPrevious. 211
ellVerify. 211
eltc. 111, 124
Environment Prerequisites 26
Environment Variables 86
EPICS . 7, 17

Basic Attributes. 17
Hardware/Software Platforms. 18
Overview. 7

EPICS_CA_ADDR_LIST 86
EPICS_CA_AUTO_ADDR_LIST 86
EPICS_CA_BEACON_PERIOD 86
EPICS_CA_CONN_TMO 86
EPICS_CA_REPEATER_PORT 86
EPICS_CA_SERVER_PORT. 86
EPICS_HOST_ARCH 26
EPICS_IOC_LOG_FILE_COMMAND. 125
EPICS_IOC_LOG_FILE_LIMIT. 125
EPICS_IOC_LOG_FILE_NAME 125
EPICS_IOC_LOG_INET 86
EPICS_IOC_LOG_PORT. 86, 125
EPICS_TS_MIN_WEST 86
EPICS_TS_NTP_INET 86
epicsAddressType . 189
epicsAddressTypeName 189
epicsInterruptType . 190
epicsPrintf . 123, 139
epicsPrtEnvParams . 115
epicsRelease . 116
EPICStovxWorksAddrType 189
epicsTypes.h . 215
epicsVprintf. 123
errlog Task . 123
errlogAddListener . 123
errlogFatal . 122
errlogGetSevEnumString 122
errlogGetSevToLog. 122
errlogInfo . 122
errlogInit . 84, 124
errlogListener . 123
errlogMajor . 122
errlogMessage. 121
errlogMinor . 122
238 EPICS IOC Application Developer’s Guide

errlogPrintf . 121
errlogRemoveListener. 123
errlogSetSevToLog . 122
errlogSevEnum . 122
errlogSevPrintf . 122
errlogSevVprintf . 122
errlogVprintf . 121
errMessage . 122
errPrintf . 122–123
Escape Sequence. 59
Event . 199
Event - Scan Type . 199
Event Scanning . 204
EVNT - Scan Related Field 200
extra - field definition rules 62
extra_info - field definition 64

F

field . 58
field_name - field definition 62
field_name - record instance definition. 68
field_size in DBADDR 171
field_type in DBADDR. 171
filed_type - field definition 62
filename extension conventions 60
FLDNAME_SZ. 169
freeListCalloc . 212
freeListCleanup. 212
freeListFree. 212
freeListInitPvt . 212
freeListItemsAvail. 212
freeListMalloc. 212
FWDLINK . 47

G

get_alarm_double Record Support Routine . . 138
get_array_info - Record Support Routine. . . . 136
get_control_double - Record Support Routine 138
get_enum_str - record Support Routine 137
get_enum_strs - record Support Routine 137
get_graphic_double - example 132
get_graphic_double - Record Support Routine138
get_ioint_info . 203
get_ioint_info - device support routine. 148
get_precision - Record Support Routine. 137
get_units - .example . 132
get_units - Record Support Routine 137
gft . 118
GNU make . 26
gnumake . 28
gphAdd . 212
gphDelete . 212
gphDump. 212
GPHENTRY . 212
gphFind . 212
gphFreeMem. 212
gphInitPvt . 212
GPIB_IO . 69

grecord . 58
gui_group - field definition 63
Guidelines for Asynchronous Records 53
Guidelines for Synchronous Records 52

H

HAG . 90–92
HOST_OPT. 40
HOST_WARN . 40
Html . 34
HTMLS. 35, 42
HTMLS_DIR . 42

I

I/O Event - Scan Type. 199
I/O Event scanned . 199
I/O Event Scanning 202, 205
INC . 34, 41
include. 58
include - Database Definitions 60
Include File Generation. 72
Include files. 34
init - device support routine 147
init - Record Support Routine. 135
init_record - device support routine 147
init_record - example 130
init_record - Record Support Routine. 135
init_value - field definition 63
InitDatabase . 83
InitDevSup . 83
InitDrvSup. 83
initHookFunction . 86
initHookRegister . 86
initHooks. 85
initHookState . 85
initial - field definition rules 62
Initialize Logging . 87
initPeriodic . 206
InitRecSup. 83
INLINK. 47
INP . 91
Input/Output Controller 7

Hardware/Software Platforms. 18
Software Components. 19

INST_IO . 70
install object Files . 33
INSTALL_LOCATION 25, 43
installEpics.pl . 44
interest - field definition rules 62
interest_level - field definition 64
interruptAccept . 84
interruptContextMessage 219
interruptIsInterruptContext 219
interruptLock. 218
interruptUnlock. 219
IOC . 17

See Input/Out Controller
IOC Error Logging . 121
239 EPICS IOC Application Developer’s Guide

iocInit . 82
iocLogClient . 125
iocLogDisable . 125
iocLogServer. 125

J

JAR . 42
JAR_INPUT . 42
Java classes . 42

K

Keywords . 58

L

LAN . 17
LDFLAGS. 40
Lex and yac . 35
LEXOPT . 42
LIBOBJS. 32
Libraries . 31
LIBRARY . 31, 38
Library example

. 33
library name . 31
Library object file . 32
Library Source file . 32
LIBRARY_HOST. 32, 39
LIBRARY_IOC . 32, 39
LIBS . 37, 41
LIBSRCS . 32, 39
link.h . 169
LINK_ALARM. 48
link_type - device definition 66
Local Area Network

Hardware/Software Platforms. 18
logMsg . 125

M

macCreateHandle . 213
macDeleteHandle . 213
macExpandString . 213
macGetValue. 213
macInstallMacros . 214
macParseDefns . 214
macPopScope . 214
macPushScope . 213
macPutValue . 213
macReportMacros. 214
Macro Substitution . 59
macSuppressWarning 213
Make . 28
Make commands . 28

Make targets . 29
makeConfigAppInclude.pl 44
makeDbDepends.pl . 45
Makefiles. 27
makeIocCdCommands.pl 45
makeMakefile.pl . 45
makeMakefileInclude.pl 45
mallocMustSucceed . 215
MANIFEST. 43
MAX_STRING_SIZE 169
Maximize Severity . 48
menu . 58
menu - Database Definition 61
menu - field definition rules 62
MENUS. 30
Menus . 30
menuScan.dbd. 200
mkdir.pl . 45
monitor - example . 134
MS. 48
Multiple Definitions . 59
munch.pl . 45
mv.pl . 45

N

name - breakpoint table. 67
NMS . 48
no_elements in DBADDR 171
NPP . 48
nstall Directories . 25

O

OBJS . 32–33, 40–41
OBJS_HOST. 42
OBJS_IOC . 42
Operator Interface

Hardware/Software Platforms. 18
OPI . 17
osiEvent.h . 218
osiFindGlobalSymbol 218
osiFindGlobalSymbol.h 218
osiInterrupt.h. 218
osiMutex.h . 219
osiPoolStatus.h . 220
osiProcess.h. 220
osiRing.h . 221
osiSem.h . 221
osiSigPipeIgnore.h . 224
osiSock.h. 224
osiSufficentSpaceInPool 220
osiThread.h . 224
OSITHREAD_ONCE_INIT. 224
osiTime.h. 227
OUTLINK. 47
Overview of Record Processing 127
240 EPICS IOC Application Developer’s Guide

P

PACKAGE . 42
Passive. 199
Passive - Scan Type. 199
path . 58
path - Database Definitions. 60
Periodic - Scan Type . 199
Periodic Scanning . 206
periodicTask . 206
Perl . 26
pfield in DBADDR . 171
pfldDes in DBADDR 171
pft . 118
PHAS - Scan Related Field. 200
post_event . 202, 205
postfix . 209
PP . 48
pp - field definition rules. 62
pp_value - field definition 64
precord - DBADDR . 171
PRIO - Scan Related Field 200
process - example . 131
process - Record Support Routine 135
process - record support routine 50
Process Passive . 48
PROD . 35, 38
PROD_LIBS . 36, 41
PROD_SRCS . 39
product libraries . 36
product name. 35
product object file . 35
product source file. 36
Products. 35
prompt - field definition rules 62
prompt_value - field definition 63
. 62
Psuedo Field . 71
put_array_info - Record Support Routine. . . . 136
put_enum_str - Record Support Routine 137
putenv . 86
PUTNOTIFY . 178
PV_LINK . 69
PVNAME_SZ . 169

Q

Quoted String . 59

R

RANLIBFLAGS . 42
RCS. 43
rebuild . 28
recGblDbaddrError . 139
recGblFwdLink. 140
recGblGetAlarmDouble 140
recGblGetControlDouble 140
recGblGetGraphicDouble 140

recGblGetPrec. 140
recGblGetTimeStamp 140
recGblInitConstantLink 141
recGblRecordError . 139
recGblRecsupError . 139
recGblResetAlarms. 139
recGblSetSevr . 139
record . 58
record attribute . 71
record instance - database definition. 68
Record Instance File . 57
Record Processing. 50
Record Support Entry Table 128
record type - Database Definition 61
Record Type Definitions 29
record_name - record instance definition 68
record_type - device definition 66
record_type - record instance definition 68
record_type - record type definition 62
recordtype . 58
RECTYPES . 29
registerRecordDeviceDriver 230
registerRecordDeviceDriver.c 230
registerRecordDeviceDriver.pl 230
Registry.h . 229
registryAdd . 229
registryDeviceSupport.h 230
registryDeviceSupportAdd 230
registryDeviceSupportFind 230
registryDriverSupport.h 230
registryDriverSupportAdd. 230
registryDriverSupportFind 230
registryDump . 229
registryFind . 229
registryFree . 229
registryFunction.h . 230
registryFunctionAdd . 230
registryFunctionFind. 230
registryRecordTypeAdd 229
registrySetTableSize . 229
RELEASE. 44
replaceVAR.pl . 45
report - device support routine 147
report - Record Support Routine. 135
RF_IO . 70
ringCreate . 221
ringDelete . 221
ringFlush . 221
ringFreeBytes . 221
ringGet . 221
ringIsEmpty. 221
ringIsFull. 221
ringPut. 221
ringSize . 221
ringUsedBytes. 221
rm.pl . 45
RSET. 128
RSET - example . 129
RULE . 91
RULES . 44
rules

field definition . 62
RULES.Db . 44
RULES_ARCHS. 44
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 241

RULES_BUILD . 44
RULES_DIRS. 44
RULES_JAVA . 44
RULES_TOP. 44

S

S_db_Blocked. 178
S_db_Pending . 178
SCAN - Scan Related Field 199
Scan Once - Scan Type 199
Scan Related Database Fields 199
SCAN_1ST_PERIODIC. 201
scanAdd. 201
scanDelete . 201
scanInit . 201
scanIoInit. 205
scanIoRequest . 205
scanOnce. 206
scanOnceSetQueueSize. 84, 207
scanpel. 112
scanpiol . 112
scanppl . 112
SCH2EDIF_FLAGS . 42
SCRIPTS. 34, 41
Scripts . 34
semBinaryCreate. 221
semBinaryDestroy. 222
semBinaryGive . 222
semBinaryId . 221
semBinaryMustCreate. 222
semBinaryMustTake . 222
semBinaryShow . 222
semBinaryTake . 222
semBinaryTakeNoWait 222
semBinaryTakeTimeout 222
semInitialState. 221
semMutexCreate . 222
semMutexDestroy . 222
semMutexGive . 222
semMutexId . 222
semMutexMustCreate 222
semMutexMustTake . 222
semMutexShow. 222
semMutexTake . 222
semMutexTakeNoWait 222
semMutexTakeTimeout. 222
semTakeStatus. 221
SHARED_LIBRARIES 39
SHRLIB_VERSION. 39
size - field definition rules. 62
size_value - field definition. 64
SNCFLAGS . 42
SPC_ALARMACK. 63
SPC_AS . 63
SPC_CALC. 64
SPC_DBADDR. 64
SPC_LINCONV . 64
SPC_MOD . 64
SPC_NOMOD . 63
SPC_RESET . 64
SPC_SCAN. 63

special - field definition rules 62
special - Record Support Routine 136
special in DBADDR . 171
special_value - field definition 63
Specifying libraries . 36
SRCS. 32, 39
State Notation Programs 34
STATIC_BUILD . 41
status codes . 124
STRICT. 40
struct dbAddr . 171
struct putNotify . 178
synchronous device support example 143
SYS_LIBS . 37, 41
SYS_PROD_LIBS 37, 41

T

tar . 28
Target files. 37
TARGETS. 37, 43
taskwd.h . 196
taskwdAnyInsert . 196
taskwdAnyRemove . 197
taskwdInsert . 196
taskwdRemove . 196
TCL libraries. 38
TCLINDEX. 38, 41
TCLLIBNAME. 38, 41
TEMPLATES . 35, 42
Templates . 35
TEMPLATES_DIR. 35, 42
Test Products. 37
TESTCLASSES . 42
TESTPROD . 37–38
threadBoolStatus. 224
threadCreate . 224
threadExitMain . 224
THREADFUNC . 224
threadGetId . 225
threadGetIdSelf . 225
threadGetName . 225
threadGetNameSelf. 225
threadGetPriority. 225
threadGetPrioritySelf 225
threadGetStackSize. 224
threadHighestPriorityLevelBelow. 225
threadId . 224
threadInit . 224
threadIsEqual . 225
threadIsSuspended . 225
threadLowestPriorityLevelAbove 225
threadOnce . 224
threadOnceId. 224
threadPriority . 224
threadPrivateCreate. 225
threadPrivateDelete. 225
threadPrivateGet . 225
threadPrivateSet . 225
threadResume . 225
threadSetPriority . 225
threadShow . 225
242 EPICS IOC Application Developer’s Guide

threadShowAll . 225
threadSleep . 225
threadStackSizeClass 224
threadSuspendSelf. 225
threadVarId . 225
timexN. 116
top . 25
Tornado II . 26
tpn . 118
TRAD . 40
truncateFile . 216
TSConfigure . 85
TSconfigure. 85
TSreport . 112
tsStamp.h. 227

U

UAG . 90–91
uninstall. 28
Unquoted String . 59
USER_DBDFLAGS . 30
USER_VPATH . 43
USES_TEMPLATE . 31
USR_CFLAGS . 39
USR_CPPFLAGS . 40
USR_CXXFLAGS . 40
USR_INCLUDE . 40
USR_LDFLAGS. 40
USR_LIBS . 36, 40

V

value - record instance definition 68
veclist . 115
VME_AM_EXT_SUP_DATA 189
VME_AM_STD_SUP_DATA 189
VME_AM_SUP_SHORT_IO. 189
VME_IO . 69
VXI_IO . 70
vxWorks . 26
vxWorks startup command file 81

Y

YACCOPT . 42
EPICS Release: R3.13.0beta12
EPICS IOC Application Developer’s Guide 243

244 EPICS IOC Application Developer’s Guide

	EPICS Input / Output Controller (IOC) Application Developer’s Guide
	Martin R. Kraimer
	Table of Contents
	Chapter 1: Introduction
	1.1 Overview
	1.2 Acknowledgments

	Chapter 2: New Features for 3.14
	2.1 Introduction
	2.2 Example Application
	2.2.1 Check that EPICS_HOST_ARCH is defined
	2.2.2 Create the example application
	2.2.3 Inspect files
	2.2.4 Build
	2.2.5 Inspect files
	2.2.6 Run the example
	2.2.7 vxWorks boot parameters

	2.3 Shell for non vxWorks environment
	2.4 Some Unresolved Items

	Chapter 3: EPICS Overview
	3.1 What is EPICS?
	3.2 Basic Attributes
	3.3 Hardware - Software Platforms (Vendor Supplied)
	3.3.1 OPI
	3.3.2 LAN
	3.3.3 IOC

	3.4 IOC Software Components
	3.4.1 IOC Database
	3.4.2 Database Access
	3.4.3 Database Scanning
	3.4.4 Record Support, Device Support and Device Drivers
	3.4.5 Channel Access
	3.4.6 Database Monitors

	3.5 Channel Access
	3.5.1 Client Services
	3.5.2 Search Server
	3.5.3 Connection Request Server
	3.5.4 Connection Management

	3.6 OPI Tools
	3.6.1 Examples of channel Access Tools
	3.6.2 Examples of other OPI Tools

	3.7 EPICS Core Software

	Chapter 4: EPICS Build Facility
	4.1 Overview
	4.1.1 <top> Directory structure
	4.1.2 Install Directories
	4.1.3 Elements of build system
	4.1.4 Features
	4.1.5 Environment Prerequisites
	4.1.6 System Prerequisites

	4.2 Makefiles
	4.2.1 Name
	4.2.2 Included Files
	4.2.3 Contents of Makefiles
	4.2.4 Simple Makefile examples

	4.3 Make
	4.3.1 Make vs. gnumake
	4.3.2 Frequently used Make commands
	4.3.3 Make targets

	4.4 Makefile definitions
	4.4.1 Breakpoint Tables
	4.4.2 Record Type Definitions
	4.4.3 Menus
	4.4.4 Expanded Database Definition File
	4.4.5 Database Definition Files
	4.4.6 Database Files
	4.4.7 Libraries
	4.4.7.1 Specifying the library name.
	4.4.7.2 Specifying Library object file names
	4.4.7.3 LIBOBJS definitions
	4.4.7.4 Specifying Library Source file names
	4.4.7.5 Library example:

	4.4.8 Generate and install object Files
	4.4.9 State Notation Programs
	4.4.10 Scripts, etc.
	4.4.11 Include files.
	4.4.12 Html and Doc files
	4.4.13 Templates
	4.4.14 Lex and yac
	4.4.15 Products
	4.4.15.1 Specifying the product name.
	4.4.15.2 Specifying product object file names
	4.4.15.3 Specifying product source file names
	4.4.15.4 Specifying libraries to be linked when creating the product

	4.4.16 Test Products
	4.4.17 Target files
	4.4.18 Bin install files
	4.4.19 TCL libraries

	4.5 Table of Makefile definitions
	4.6 Configuration Files
	4.6.1 Base Configure Directory
	4.6.2 Base Configure File Descriptions
	4.6.3 Base configure/os File Descriptions
	4.6.4 Base configure/tool File Descriptions

	Chapter 5: Database Locking, Scanning, And Processing
	5.1 Overview
	5.2 Record Links
	5.3 Database Links
	5.3.1 Process Passive
	5.3.2 Maximize Severity

	5.4 Database Locking
	1. The periodic, I/O event, and event tasks lock before and unlock after processing:
	2. dbPutField locks before modifying a record and unlocks afterwards.
	3. dbGetField locks before reading and unlocks afterwards.
	4. Any asynchronous record support completion routine must lock before modifying a record and unl...

	5.5 Database Scanning
	1. Periodic - Records are scanned at regular intervals.
	2. I/O event - A record is scanned as the result of an I/O interrupt.
	3. Event - A record is scanned as the result of any task issuing a post_event request.
	4. Passive - A record is scanned as a result of a call to dbScanPassive. dbScanPassive will issue...

	5.6 Record Processing
	5.7 Guidelines for Creating Database Links
	1. A begins processing. While processing a request is made to process B.
	2. B starts processing. While processing a request is made to process C.
	3. C starts processing. One of the first steps is to get a value from A via the input link.
	4. At this point a question occurs. Note that the input link specifies process passive (signified...
	5. C obtains the value from A and completes its processing. Control returns to B.
	6. B completes returning control to A
	7. A completes processing.
	5.7.1 Rules Relating to Database Links
	5.7.1.1 Processing Order
	1. Forward links are processed in order from left to right and top to bottom. For example the fol...
	2. If a record has multiple input links (calculation and select records) the input is obtained in...
	3. All input and output links are processed before the forward link.

	5.7.1.2 Lock Sets
	5.7.1.3 PACT - processing active
	5.7.1.4 Process Passive: Link option
	1. Fanout starts processing and asks that B be processed.
	2. B begins processing. It calls dbGetLink to obtain data from A.
	3. Because the input link has process passive true, a request is made to process A.
	4. A is processed, the data value fetched, and control is returned to B
	5. B completes processing and control is returned to fanout. Fanout asks that C be processed.
	6. C begins processing. It calls dbGetLink to obtain data from A.
	7. Because the input link has process passive TRUE, a request is made to process A.
	8. A is processed, the data value fetched, and control is returned to C.
	9. C completes processing and returns to fanout
	10. The fanout completes

	5.7.1.5 Process Passive: Field attribute
	5.7.1.6 Maximize Severity: Link option

	5.8 Guidelines for Synchronous Records
	1. A record can be scanned periodically (at one of several rates), via I/O event, or via Event.
	2. For each periodic group and for each Event group the phase field can be used to specify proces...
	3. The application programmer has no control over the record processing order of records in diffe...
	4. The disable fields (SDIS, DISA, and DISV) can be used to disable records from being processed....
	5. A record (periodic or other) can be the root of a set of passive records that will all be proc...
	6. The process_passive option specified for each field of each record determines if a passive rec...
	7. The process_passive option for input and output links provides the application developer contr...
	8. General link structures can be defined. The application programmer should be wary, however, of...

	5.9 Guidelines for Asynchronous Records
	1. pact is set TRUE
	2. Data is obtained for all input links
	3. Record processing is started
	4. The record processing routine returns
	5. Record processing continues
	6. Record specific alarm conditions are checked
	7. Monitors are raised
	8. Forward links are processed
	9. pact is set FALSE.
	10. Asynchronous record processing does not delay the scanners.
	11. Between the time record processing begins and the asynchronous completion routine completes, ...
	12. Forward and output links are triggered only when the asynchronous completion routine complete...
	5.9.1 Infinite Loop
	1. A starts record processing and returns leaving pact TRUE.
	2. Sometime later the record completion for A occurs. During record completion a request is made ...
	3. Sometime later the record completion for B occurs. During record completion a request is made ...

	5.9.2 Obtain Old Data
	5.9.3 Delays
	5.9.4 Task Abort

	5.10 Cached Puts
	5.11 Channel Access Links
	1. A record link that references a record in a different IOC.
	2. A link that the application developer forces to be a channel access link.
	5.11.1 INLINK
	5.11.2 OUTLINK
	5.11.3 FWDLINK

	Chapter 6: Database Definition
	6.1 Overview
	6.2 Brief Summary of Database Definition Syntax
	6.3 General Rules for Database Definition
	6.3.1 Keywords
	6.3.2 Unquoted Strings
	6.3.3 Quoted Strings
	6.3.4 Macro Substitution
	6.3.5 Escape Sequences
	6.3.6 Define before referencing
	6.3.7 Multiple Definitions
	6.3.8 filename extension
	6.3.9 path addpath
	6.3.10 include
	6.3.11 comment
	6.3.12 dbTranslateEscape
	6.3.13 dbTranslateEscape

	6.4 Menu
	6.5 Record Type
	6.5.1 Format:
	6.5.2 rules
	6.5.3 definitions
	6.5.4 Example

	6.6 Device
	6.6.1 Format:
	6.6.2 definitions
	6.6.3 Examples

	6.7 Driver
	6.7.1 Format:
	6.7.2 Definitions
	6.7.3 Examples

	6.8 Breakpoint Table
	6.8.1 Format:
	6.8.2 Definitions
	6.8.3 Example

	6.9 Record Instance
	6.9.1 Format:
	6.9.2 definitions
	6.9.3 Examples

	6.10 Record Attribute
	6.11 Breakpoint Tables - Discussion
	1. No Conversion.
	2. Linear Conversion.
	3. Breakpoint table.

	6.12 Menu and Record Type Include File Generation.
	6.12.1 Introduction
	6.12.2 dbToMenuH
	6.12.3 dbToRecordtypeH

	6.13 dbExpand
	6.14 dbLoadDatabase
	6.14.1 EXAMPLE

	6.15 dbLoadRecords
	6.16 dbLoadTemplate
	6.16.1 EXAMPLE

	6.17 dbReadTest

	Chapter 7: IOC Initialization
	7.1 Overview - Environments requiring a main program
	7.2 Overview - vxWorks
	7.3 Overview - RTEMS
	7.4 iocInit
	7.4.1 coreRelease
	7.4.2 taskwdInit
	7.4.3 callbackInit
	7.4.4 dbCaLinkInit
	7.4.5 initDrvSup
	7.4.6 initRecSup
	7.4.7 initDevSup
	7.4.8 initDatabase
	7.4.9 finishDevSup
	7.4.10 scanInit
	7.4.11 interruptAccept
	7.4.12 initialProcess
	7.4.13 rsrv_init

	7.5 Changing iocCore fixed limits
	7.5.1 callbackSetQueueSize
	7.5.2 dbPvdTableSize
	7.5.3 scanOnceSetQueueSize
	7.5.4 errlogInit

	7.6 TSconfigure
	7.7 initHooks
	7.8 Environment Variables
	7.9 Initialize Logging

	Chapter 8: Access Security
	8.1 Overview
	1. Overview - This section
	2. Quick start - A summary of the steps necessary to start access security.
	3. User’s Guide - This explains what access security is and how to use it.
	4. Design Summary - Functional Requirements and Design Overview.
	5. Application Programmer’s Interface
	6. Database Access Security - Access Security features for EPICS IOC databases.
	7. Channel Access Security - Access Security features in Channel Access
	8. Implementation Overview

	8.2 Quick Start
	8.3 User’s Guide
	8.3.1 Features
	8.3.2 Limitations
	8.3.3 Definitions
	8.3.4 Access Security Configuration File
	8.3.4.1 Simple Example
	8.3.4.2 Syntax Definition
	8.3.4.3 Discussion
	1. The ASG associated with the record is searched.
	2. Each RULE is checked for the following:
	a. The field’s level must be less than or equal to the level for this RULE.
	b. If UAG is defined, the user must belong to one of the specified UAGs. If UAG is not defined al...
	c. If HAG is defined, the user’s host must belong to one one of the HAGs. If HAG is not defined a...
	d. If CALC is specified, the calculation must yield the value 1, i.e. TRUE. If any of the INP fie...
	3. The maximum access allowed by step 2 is the access chosen.

	8.3.5 ascheck - Check Syntax of Access Configuration File
	8.3.6 IOC Access Security Initialization
	8.3.7 Database Configuration
	8.3.7.1 Access Security Group
	8.3.7.2 Subroutine Record Support
	1. Modify the file specified by the last call to asSetFilename so that it contains the new config...
	2. Write a 1 to the subroutine record VAL field. Note that this can be done via channel access.
	3. When the value is found to be 1, asInit is called and the value set back to 0.
	4. The record is treated as an asynchronous record. Completion occurs when the new access configu...

	8.3.7.3 Record Type Description

	8.3.8 Example:
	1. Anyone can have read access to all fields at anytime.
	2. Linac engineers, located in the injection control or control room, can have write access to mo...
	3. Operators, located in the injection control or control room, can have write access to most lev...
	4. The operations supervisor, linac supervisor, and the application developers can have write acc...
	5. Most records use the above rules but a few (high voltage power supplies, etc.) are placed unde...
	6. IOC channel access clients always have level 1 write privilege.

	8.4 Design Summary
	8.4.1 Summary of Functional Requirements
	1. Each field of each record type is assigned an access security level.
	2. Each record instance is assigned to a unique access security group.
	3. Each user is assigned to one or more user access groups.
	4. Each node is assigned to a host access group.
	5. For each access security group a set of access rules can be defined. Each rule specifies:
	a. Access security level
	b. READ or READ/WRITE access.
	c. An optional list of User Access Groups or * meaning anyone.
	d. An optional list of Host Access Groups or * meaning anywhere.
	e. Conditions based on values of process variables

	8.4.2 Additional Requirements
	8.4.2.1 Performance
	8.4.2.2 Generic Implementation
	8.4.2.3 No Access Security within an IOC
	8.4.2.4 Defaults
	8.4.2.5 Access Security is Optional

	8.4.3 Design Overview
	8.4.3.1 Configuration File
	8.4.3.2 Access Security Library
	8.4.3.3 IOC Database Access Security
	8.4.3.4 Channel Access Security

	8.4.4 Comments
	8.4.5 Performance and Memory Requirements
	1. A database consisting of 5000 soft analog records was created.
	2. A channel access client (caput) was created that performs ca_puts on each of the 5000 channels...
	3. A channel access client (caget) was created that has monitors on each of the 5000 channels.

	8.5 Access Security Application Programmer’s Interface
	8.5.1 Definitions
	8.5.2 Initialization
	8.5.3 Group manipulation
	8.5.3.1 add Member
	8.5.3.2 remove Member
	8.5.3.3 get Member Pvt
	8.5.3.4 put Member Pvt
	8.5.3.5 change Group

	8.5.4 Client Manipulation
	8.5.4.1 add Client
	8.5.4.2 change Client
	8.5.4.3 remove Client
	8.5.4.4 get Client Pvt
	8.5.4.5 put Client Pvt
	8.5.4.6 register Callback
	8.5.4.7 check Get
	8.5.4.8 check Put

	8.5.5 Access Computation
	8.5.5.1 compute all Asg
	8.5.5.2 compute Asg
	8.5.5.3 compute access rights

	8.5.6 Diagnostic
	8.5.6.1 dump
	8.5.6.2 dump UAG
	8.5.6.3 dump HAG
	8.5.6.4 dump Rules
	8.5.6.5 dump member
	8.5.6.6 dump hash table

	8.6 Database Access Security
	8.6.1 Access Level definition
	1. Structure fldDes (dbBase.h), which describes the attributes of each field, contains a field ac...
	2. Each field description in a record description contains a field with the value ASLx.

	8.6.2 Access Security Group definition
	8.6.3 Access Client Definition
	8.6.4 Database Access Library
	8.6.4.1 Initialization
	8.6.4.2 Routines used by Channel Access Server
	8.6.4.3 Routine to test asAddClient
	8.6.4.4 Subroutines attached to a subroutine record
	8.6.4.5 Diagnostic Routines

	8.7 Channel Access Security
	8.7.1 CA Server Interfaces to the Access Security System
	8.7.2 Client Interfaces

	8.8 Access Control: Implementation Overview
	8.8.1 Implementation Overview
	8.8.2 Locking

	8.9 Structures

	Chapter 9: IOC Test Facilities
	9.1 Overview
	9.2 Database List, Get, Put
	9.2.1 dbl
	9.2.2 dbgrep
	9.2.3 dba
	9.2.4 dbgf
	9.2.5 dbpf
	9.2.6 dbpr
	9.2.7 dbtr
	9.2.8 dbnr

	9.3 Breakpoints
	9.3.1 dbb
	9.3.2 dbd
	9.3.3 dbs
	9.3.4 dbc
	9.3.5 dbp
	9.3.6 dbap
	9.3.7 dbstat

	9.4 Error Logging
	9.4.1 eltc

	9.5 Hardware Reports
	9.5.1 dbior
	9.5.2 dbhcr

	9.6 Scan Reports
	9.6.1 scanppl
	9.6.2 scanpel
	9.6.3 scanpiol

	9.7 Time Server Report
	9.7.1 TSreport

	9.8 Access Security Commands
	9.8.1 asSetSubstitutions
	9.8.2 asSetFilename
	9.8.3 asInit
	9.8.4 asdbdump
	9.8.5 aspuag
	9.8.6 asphag
	9.8.7 asprules
	9.8.8 aspmem

	9.9 Channel Access Reports
	9.9.1 ca_channel_status
	9.9.2 casr
	9.9.3 dbel
	9.9.4 dbcar

	9.10 Interrupt Vectors
	9.10.1 veclist

	9.11 EPICS
	9.11.1 epicsPrtEnvParams
	9.11.2 epicsRelease

	9.12 Database System Test Routines
	9.12.1 dbt
	9.12.2 dbtgf
	9.12.3 dbtpf
	9.12.4 dbtpn

	9.13 Record Link Reports
	9.13.1 dblsr
	9.13.2 dbcar
	9.13.3 dbhcr

	9.14 Old Database Access Testing
	9.14.1 gft
	9.14.2 pft
	9.14.3 tpn

	9.15 Routines to dump database information
	9.15.1 dbDumpPath
	9.15.2 dbDumpMenu
	9.15.3 dbDumpRecordType
	9.15.4 dbDumpFldDes
	9.15.5 dbDumpDevice
	9.15.6 dbDumpDriver
	9.15.7 dbDumpRecord
	9.15.8 dbDumpBreaktable
	9.15.9 dbPvdDump

	Chapter 10: IOC Error Logging
	10.1 Overview
	10.2 Error Message Routines
	10.2.1 Basic Routines
	10.2.2 Log with Severity
	10.2.3 Status Routines
	10.2.4 Obsolete Routines

	10.3 errlog Task
	10.3.1 Add and Remove Log Listener
	10.3.2 target console routines

	10.4 Status Codes
	10.5 iocLog
	10.5.1 iocLogServer
	10.5.2 iocLogClient
	10.5.3 Initialize Logging
	10.5.4 Configuring a Private Log Server

	Chapter 11: Record Support
	11.1 Overview
	11.2 Overview of Record Processing
	1. Initiate the I/O operation and set pact TRUE
	2. Determine a method for again calling process when the operation completes
	3. Return immediately without completing record processing
	4. When process is called after the I/O operation complete record processing
	5. Set pact FALSE and return

	11.3 Record Support and Device Support Entry Tables
	11.4 Example Record Support Module
	11.4.1 Declarations
	11.4.2 init_record
	11.4.3 process
	11.4.4 Miscellaneous Utility Routines
	11.4.5 Alarm Processing
	11.4.6 Raising Monitors

	11.5 Record Support Routines
	11.5.1 Generate Report of Each Field in Record
	11.5.2 Initialize Record Processing
	11.5.3 Initialize Specific Record
	11.5.4 Process Record
	11.5.5 Special Processing
	11.5.6 Get Value
	11.5.7 Convert dbAddr Definitions
	11.5.8 Get Array Information
	11.5.9 Put Array Information
	11.5.10 Get Units
	11.5.11 Get Precision
	11.5.12 Get Enumerated String
	11.5.13 Get Strings for Enumerated Field
	11.5.14 Put Enumerated String
	11.5.15 Get Graphic Double Information
	11.5.16 Get Control Double Information
	11.5.17 Get Alarm Double Information

	11.6 Global Record Support Routines
	11.6.1 Alarm Status and Severity
	11.6.2 Alarm Acknowledgment
	11.6.3 Generate Error: Process Variable Name, Caller, Message
	11.6.4 Generate Error: Status String, Record Name, Caller
	11.6.5 Generate Error: Record Name, Caller, Record Support Message
	11.6.6 Get Graphics Double
	11.6.7 Get Control Double
	11.6.8 Get Alarm Double
	11.6.9 Get Precision
	11.6.10 Get Time Stamp
	11.6.11 Forward link
	11.6.12 Initialize Constant Link

	Chapter 12: Device Support
	12.1 Overview
	12.2 Example Synchronous Device Support Module
	12.3 Example Asynchronous Device Support Module
	1. When first called pact is FALSE. It arranges for a callback (myCallback) routine to be called ...
	2. It prints a message stating that processing has started, sets pact TRUE, and returns. The reco...
	3. When the specified time elapses myCallback is called. It locks the record, calls process, and ...
	4. When process executes, it again calls read_ai. This time pact is TRUE.
	5. read_ai prints a message stating that record processing is complete and returns a status of 2....
	6. When read_ai returns the record processing routine completes record processing.

	12.4 Device Support Routines
	12.4.1 Generate Device Report
	12.4.2 Initialize Record Processing
	12.4.3 Initialize Specific Record
	12.4.4 Get I/O Interrupt Information
	12.4.5 Other Device Support Routines

	Chapter 13: Driver Support
	13.1 Overview
	13.2 Device Drivers
	13.2.0.1 init
	13.2.0.2 report
	13.2.0.3 Hardware Configuration

	Chapter 14: Static Database Access
	14.1 Overview
	14.2 Definitions
	14.2.1 DBBASE
	14.2.2 DBENTRY
	14.2.3 Field Types

	14.3 Allocating and Freeing DBBASE
	14.3.1 dbAllocBase
	14.3.2 dbFreeBase

	14.4 DBENTRY Routines
	14.4.1 Alloc/Free DBENTRY
	14.4.2 dbInitEntry dbFinishEntry
	14.4.3 dbCopyEntry dbCopyEntry Contents

	14.5 Read and Write Database
	14.5.1 Read Database File
	14.5.2 Write Database Definitons
	14.5.3 Write Record Instances

	14.6 Manipulating Record Types
	14.6.1 Get Number of Record Types
	14.6.2 Locate Record Type
	14.6.3 Get Record Type Name

	14.7 Manipulating Field Descriptions
	14.7.1 Get Number of Fields
	14.7.2 Locate Field
	14.7.3 Get Field Type
	14.7.4 Get Field Name
	14.7.5 Get Default Value
	14.7.6 Get Field Prompt

	14.8 Manipulating Record Attributes
	14.8.1 dbPutRecord Attribute
	14.8.2 dbGetRecord Attribute

	14.9 Manipulating Record Instances
	14.9.1 Get Number of Records
	14.9.2 Locate Record
	14.9.3 Get Record Name
	14.9.4 Create/Delete/Free Record
	14.9.5 Copy Record
	14.9.6 Rename Record
	14.9.7 Record Visibility
	14.9.8 Find Field
	14.9.9 Get/Put Field Values

	14.10 Manipulating Menu Fields
	14.10.1 Get Number of Menu Choices
	14.10.2 Get Menu Choice
	14.10.3 Get/Put Menu
	14.10.4 Locate Menu

	14.11 Manipulating Link Fields
	14.11.1 Link Types
	14.11.2 All Link Fields
	14.11.3 Constant and Process Variable Links

	14.12 Manipulating MenuForm Fields
	14.12.1 Alloc/Free Form
	14.12.2 Get/Put Form
	14.12.3 Verify Form
	14.12.4 Get Related Field
	14.12.5 Example

	14.13 Find Breakpoint Table
	14.14 Dump Routines
	14.15 Examples
	14.15.1 Expand Include
	14.15.2 dbDumpRecords

	Chapter 15: Runtime Database Access
	15.1 Overview
	15.2 Database Include Files
	15.2.1 dbDefs.h
	15.2.2 dbFldTypes.h
	1. Constant - The value associated with the field is a floating point value initialized with a co...
	2. Hardware links - The link contains a data structure which describes a signal connected to a pa...
	3. Process Variable Links - This is one of three types:
	a. PV_LINK: The process variable name.
	b. DB_LINK: A reference to a process variable in the same IOC.
	c. CA_LINK: A reference to a variable located in another IOC.

	15.2.3 dbAccess.h
	15.2.4 link.h

	15.3 Runtime Database Access Overview
	15.3.1 Database Request Types and Options
	15.3.2 Options Example
	15.3.3 ACKT and ACKS

	15.4 Database Access Routines
	15.4.1 dbNameToAddr
	15.4.2 Get Routines
	15.4.2.1 dbGetField
	15.4.2.2 dbGetLink and dbGetLinkValue
	15.4.2.3 dbGet

	15.4.3 Put Routines
	15.4.3.1 dbPutField
	1. If the DISP field is TRUE then, unless it is the DISP field itself which is being modified, th...
	2. The record is locked.
	3. dbPut is called.
	4. If the dbPut is successful then: If this is the PROC field or if both of the following are TRU...
	a. If the record is already active ask for the record to be reprocessed when it completes.
	b. Call dbScanPassive after setting putf TRUE to show the process request came from dbPutField.
	5. The record is unlocked.

	15.4.3.2 dbPutLink and dbPutLinkValue
	1. Calls dbPut.
	2. Implements maximize severity.
	3. If the field being referenced is PROC or if both of the following are true: 1) process_passive...
	a. If the record is already active because of a dbPutField request then ask for the record to be ...
	b. otherwise call dbScanPassive.

	15.4.3.3 dbPut

	15.4.4 Put Notify Routines
	1. If a putNotify is already active on the record to which the put is directed, dbPutNotify just ...
	2. The user supplied callback is called when all processing is complete or when an error is detec...
	3. The user supplied callback routine must not issue any calls that block such as Unix I/O requests.
	4. In general a set of records may need to be processed as a result of a single dbPutNotify. If d...
	5. If a record in the set is found to be active because of a dbPutField request then when that re...
	6. If a record is found to already be active because of the original dbPutNotify request then not...
	15.4.4.1 dbPutNotify
	15.4.4.2 dbNotifyCancel
	15.4.4.3 dbNotifyAdd
	15.4.4.4 dbNotifyCompletion

	15.4.5 Utility Routines
	15.4.5.1 dbBufferSize
	15.4.5.2 dbValueSize
	15.4.5.3 dbGetRest
	15.4.5.4 dbIsValueField
	15.4.5.5 dbGetFieldIndex
	15.4.5.6 dbGetNelements
	15.4.5.7 dbIsLinkConnected
	15.4.5.8 dbGetPdbAddrFromLink
	15.4.5.9 dbGetLinkDBFtype
	15.4.5.10 dbGetControlLimits
	15.4.5.11 dbGetGraphicLimits
	15.4.5.12 dbGetAlarmLimits
	15.4.5.13 dbGetPrecision
	15.4.5.14 dbGetUnits
	15.4.5.15 dbGetSevr
	15.4.5.16 dbGetTimeStamp

	15.4.6 Attribute Routine
	15.4.6.1 dbPutAttribute

	15.4.7 Process Routines
	15.4.7.1 dbScanPassive dbScanLink dbScanFwdLink
	15.4.7.2 dbProcess

	15.5 Runtime Link Modification
	15.6 Channel Access Monitors
	15.7 Lock Set Routines
	15.7.0.1 dbScanLock
	15.7.0.2 dbScanUnlock
	15.7.0.3 dbLockGetLockId
	15.7.0.4 dbLockInitRecords
	15.7.0.5 dbLockSetMerge
	15.7.0.6 dbLockSetSplitSl
	15.7.0.7 dbLockSetGblLock
	15.7.0.8 dbLockSetGblUnlock
	15.7.0.9 dbLockSetRecordLock

	15.8 Channel Access Database Links
	15.8.1 Basic Routines
	15.8.1.1 dbCaLinkInit
	15.8.1.2 dbCaAddLink
	15.8.1.3 dbCaRemoveLink
	15.8.1.4 dbCaGetLink
	15.8.1.5 dbCaPutLink
	15.8.1.6 dbCaGetAttributes
	15.8.1.7 dbCaGetControlLimits
	15.8.1.8 dbCaGetGraphicLimits
	15.8.1.9 dbCaGetAlarmLimits
	15.8.1.10 dbCaGetPrecision
	15.8.1.11 dbCaGetUnits
	15.8.1.12 dbCaGetNelements
	15.8.1.13 dbCaGetSevr
	15.8.1.14 dbCaGetTimeStamp
	15.8.1.15 dbCaIsLinkConnected
	15.8.1.16 dbCaGetLinkDBFtype

	Chapter 16: Device Support Library
	16.1 Overview
	16.2 Registering VME Addresses
	16.2.1 Definitions of Address Types
	16.2.2 Register Address
	16.2.3 Unregister Address

	16.3 Interrupt Connect Routines
	16.3.1 Definitions of Interrupt Types
	16.3.2 Connect
	16.3.3 Disconnect
	16.3.4 Enable Level
	16.3.5 Disable Level

	16.4 Macros and Routines for Normalized Analog Values
	16.4.1 Normalized GetField
	16.4.2 Convert Digital Value to a Normalized Double Value
	16.4.3 Convert Normalized Double Value to a Digital Value

	Chapter 17: EPICS General Purpose Tasks
	17.1 Overview
	17.2 General Purpose Callback Tasks
	17.2.1 Overview
	1. Include callback definitions:
	2. Provide storage for a structure that is a private structure for the callback tasks:
	3. Call routines (actually macros) to initialize fields in CALLBACK:
	4. Whenever a callback request is desired just call one of the following:

	17.2.2 Syntax
	17.2.3 Example
	17.2.4 Callback Queue

	17.3 Task Watchdog
	1. Include module:
	2. Insert request:
	3. Remove request:
	4. Insert request to be notified if any task suspends:
	5. Remove request for taskwdAnyInsert:

	Chapter 18: Database Scanning
	18.1 Overview
	18.2 Scan Related Database Fields
	18.2.1 SCAN
	18.2.2 PHAS
	18.2.3 EVNT - Event Number
	18.2.4 PRIO - Scheduling Priority

	18.3 Scan Related Software Components
	18.3.1 menuScan.dbd
	18.3.2 dbScan.h
	18.3.3 Initializing Database Scanners
	18.3.4 Adding And Deleting Records From Scan List
	18.3.5 Declaring Database Event
	18.3.6 Interfacing to I/O Event Scanning
	1. Include <dbScan.h>
	2. For each separate event source the following must be done:
	a. Declare an IOSCANPVT variable, e.g.
	b. Call scanIoInit, e.g.
	3. Provide the device support get_ioint_info routine. This routine has the format:
	4. Whenever an I/O event is detected call scanIoRequest, e.g.

	18.4 Implementation Overview
	18.4.1 Definitions And Routines Common To All Scan Types
	18.4.2 Event Scanning
	Figure 18-1: Scan List Memory Layout
	18.4.2.1 post_event

	18.4.3 I/O Event Scanning
	18.4.3.1 scanIoInit
	Figure 18-1: Interrupt Source Structure

	18.4.3.2 scanIoRequest

	18.4.4 Periodic Scanning
	Figure 18-1: Structure after iocInit
	18.4.4.1 initPeriodic
	18.4.4.2 periodicTask

	18.4.5 Scan Once
	18.4.5.1 scanOnce
	18.4.5.2 SetQueueSize

	Chapter 19: libCom
	19.1 bucketLib.h
	19.2 calc
	19.3 cvtFast.h
	19.4 cxxTemplates.h
	19.5 dbmf.h
	19.6 ellLib.h
	19.7 fdmgr.h
	19.8 freeList.h
	19.9 gpHash.h
	19.10 logClient
	19.11 macLib.h
	19.12 misc
	19.12.1 aToIPAddr
	1. n.n.n.n:p The Internet address of the host, specified as four numbers separated by periods.
	2. xxxxxxxx:p The Internet address number of the host, specified as a single number.
	3. hostname:p The Internet host name of the host.

	19.12.2 adjustment.h
	19.12.3 cantProceed.h
	19.12.4 dbDefs.h
	19.12.5 epicsString.h
	19.12.6 epicsTypes.h
	19.12.7 gsd_sync_defs.h
	19.12.8 locationException.h
	19.12.9 shareLib.
	19.12.10 truncateFile.h
	19.12.11 unixFileName.h

	19.13 timer.h

	Chapter 20: libCom OSI libraries
	20.1 Overview
	20.2 epicsAssert.h
	20.3 osiEvent.h
	20.4 osiFindGlobalSymbol.h
	20.5 osiInterrupt.h
	20.6 osiMutex.h
	20.7 osiPoolStatus.h
	20.8 osiProcess.h
	20.9 osiRing.h
	20.10 osiSem.h
	20.11 osiSigPipeIgnore.h
	20.12 osiSock.h
	20.13 osiThread.h
	20.14 osiTime.h
	20.15 tsStamp.h

	Chapter 21: Registry
	21.1 Registry.h
	21.2 registryRecordType.h
	21.3 registryDeviceSupport.h
	21.4 registryDriverSupport.h
	21.5 registryFunction.h
	21.6 registerRecordDeviceDriver.c
	21.7 registerRecordDeviceDriver.pl

	Chapter 22: Database Structures
	22.1 Overview
	22.2 Include Files
	22.3 Structures
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Y

