Channel Access Protocol

Andrew Johnson — Computer Scientist, AES-SSG

Includes material from:
 Ken Evans, ANL
 Kay Kasemir, ORNL
EPICS Overview

![EPICS Overview Diagram](image-url)
Channel Access Concepts

- Underlying Network Protocols
- Process Variable Connection Process
- Search Requests
- Beacons
- Beacon Anomalies
- CaRepeater
Underlying Network Protocols

- Channel Access uses two Internet v4 protocols, UDP and TCP
- UDP (User Datagram Protocol)
 - Fast, one way message, unreliable
 - Packets may get lost, re-ordered, duplicated
 - Destination can be directed (unicast) or broadcast
 - Unicast: To a specific IP address, e.g. 123.45.6.100
 - Broadcast: To all IP addresses in a subnet, e.g. 123.45.6.255
 - Broadcasting across subnets is often restricted for security reasons
- TCP (Transmission Control Protocol)
 - Two way, reliable, persistent connection
 - Byte-streams are sent between the two end-points
 - OS handles acknowledgments, timeouts, retransmissions, etc.
Search and Connect Graphically

1. **UDP Broadcast Sequence**
 - **Who has it?**

2. **UDP Reply**
 - **I have it!**

3. **TCP Connection**
 - **Let’s talk!**

```
MEDM  MEDM  Client  Client  Client  MEDM

Check  Check  IOC  Check

Meter  Power Supply  Camera
```
Search Requests

- A client makes a search request for each PV, to find its server.
- Search requests for a PV start to be sent:
 - When a PV is first requested by a client.
 - For unresolved PVs, whenever a beacon anomaly is seen or another PV is requested by the client application.
- Search requests for multiple PVs are combined and sent over UDP:
 - Initially repeated after 30 ms, the delay doubles each time until it reaches 5 seconds, where it stays.
 - Searching stops as soon as a server responds.
 - After 100 packets (about 8 minutes) searches are sent less frequently.
 - The exact sequence may be different owing to fine tuning.
- Clients usually connect on the first packet or within the first few.
 - Requests for non-existent PVs can cause a lot of traffic.
Beacons

- A Beacon is a UDP broadcast packet sent by a Server
- When it is healthy, each Server broadcasts a UDP beacon at regular intervals (like a heartbeat)
 - `EPICS_CA_BEACON_PERIOD`, 15 seconds by default
- When it starts up, each Server broadcasts a sequence of beacons
 - Starts with a small interval (25 ms, 75 ms for VxWorks)
 - Interval doubles each time
 - When it reaches 15 seconds, it stays there
 - Takes about 10 beacons or 40 seconds to get to steady state
- Clients monitor the beacons from all servers
 - Determine connection status, whether to reissue searches
Beacon Anomalies

- A Beacon Anomaly is any change from a normal beacon interval
 - “Normal” can be different for different servers
- If a client sees no beacons from a server it has channels from
 - After 30 sec the client sends a message over its TCP connection
 - If still no beacons and no reply from TCP, connection is down
 - Client program gets notified about each channel that disconnected
- Abnormal beacon interval:
 - Short: IOC has restarted
 - Long: IOC was disconnected
- Anomalies cause clients to retry any outstanding search requests
- Network problems can look like beacon anomalies
CaRepeater

- When running multiple CA clients they all need to listen for beacons
 - Unfortunately UDP broadcasts are not normally copied to every process listening on the same UDP port
- The CaRepeater solves this problem
 - There is one CaRepeater process per workstation
 - Clients make a TCP connection to it when they start up
 - CaRepeater receives the beacons over UDP
 - `EPICS_CA_REPEATER_PORT` [usually 5065]
 - The CaRepeater forwards the beacons to its Clients over TCP
Important Environment Variables

- **EPICS_CA_ADDR_LIST**
 - Tells CA client library where to search for PVs
 - Is a list of IP addresses or hostnames (separated by spaces)
 - 123.45.1.255 123.45.2.14 123.45.2.108
 - Default uses broadcast addresses of all interfaces on the workstation
 - Works fine when servers are all on same subnet as clients
 - Broadcast address
 - Search goes to all servers on the subnet
 - Example: 123.45.1.255
 - Use `ifconfig -a` on UNIX to find it (or ask an administrator)

- **EPICS_CA_AUTO_ADDR_LIST**
 - **YES**: Include default addresses above in searches
 - **NO**: Do not search on default addresses
 - If you set **EPICS_CA_ADDR_LIST**, you usually also set this to **NO**
EPICS_CA_ADDR_LIST

Broadcast
123.45.1.255

Subnet
123.45.1.x

Server

IOC

Meter

Power Supply

IOC

Camera

Specific
123.45.2.108

Subnet
123.45.2.x

Not Searched
Other Environment Variables

- **CA Client**
 - `EPICS_CA_ADDR_LIST`
 - `EPICS_CA_AUTO_ADDR_LIST`
 - `EPICS_CA_CONN_TMO`
 - `EPICS_CA_BEACON_PERIOD`
 - `EPICS_CA_REPEATER_PORT`
 - `EPICS_CA_SERVER_PORT`
 - `EPICS_CA_MAX_ARRAY_BYTES`

- **CA Server (not IOC)**
 - `EPICS_CAS_SERVER_PORT`
 - `EPICS_CAS_AUTO_BEACON_ADDR_LIST`
 - `EPICS_CAS_BEACON_ADDR_LIST`
 - `EPICS_CAS_BEACON_PERIOD`
 - `EPICS_CAS_BEACON_PORT`
 - `EPICS_CAS_INTF_ADDR_LIST`
 - `EPICS_CAS_IGNORE_ADDR_LIST`

- See the Channel Access Reference Manual for more information
Reference Documentation

■ Channel Access Reference Manual
 ● Starting point for more information
 ● Specific to each version of EPICS Base
 □ Included with the Base source code
 ● Also available from the EPICS website
 □ EPICS Home → Base → R3.14 → R3.14.x

■ A CA Protocol Description document exists
 ● Created from the software in 2003 (R3.14.4), updated in 2008
 ● Written by CosyLab, not by Jeff Hill
 ● Does not completely cover the protocol semantics
 ● Used to create the CAJ Native Java library implementation
Summary

- Clients send search requests when they want a PV
- Each server has to check if it has the PV for every packet in the search-request sequence
- Servers send beacons at regular intervals and with a faster pattern when they come up
- A beacon anomaly is any pattern that is not a regular beacon
- Beacon anomalies may cause clients to resend search requests for any unresolved PVs
- Search request sequences end early for found PVs, but not for non-existent PVs
- Search requests put a load on the servers and add to network traffic
 - This can cause problems
 - Consequently, undesirable beacon anomalies and search requests should be minimized or eliminated
- Searches use UDP port 5064 and beacons UDP port 5065
Virtual Circuit Disconnect

- 3.13 and early 3.14
 - Hang-up message or no response from server for 30 sec.
 - If not a hang-up, then client sends “Are you there” query
 - If no response for 5 sec, TCP connection is closed
 - MEDM screens go white
 - Clients reissue search requests

- 3.14.5 and later
 - Hang-up message from server
 - TCP connection is closed
 - MEDM screens go white
 - Clients reissue search requests
Virtual Circuit Unresponsive

- 3.14.5 and later
 - No response from server for 30 sec.
 - Client then sends “Are you there” query
 - If no response for 5 sec, TCP connection is **not** closed
 - For several hours, at least
 - MEDM screens go white
 - Clients **do not** reissue search requests
 - Helps recover from network disruptions

- Clients that do not call `ca_poll()` frequently will get a virtual circuit disconnect, even though the server may be OK
 - Clients written for 3.13 but using 3.14 sometimes have this problem
 - May be changed in future versions