
Channel Access Client Programming

Andrew Johnson — Computer Scientist, AES-SSG

AES EPICS Training — May 2013 — CA Client APIs

2

Channel Access

■ The main programming interface for writing Channel Access clients is the library that
comes with EPICS base
● Written in C++, the API is pure C

■ Almost all CA client APIs for other languages call the C library
● Main exception: Pure Java library ‘CAJ’

■ Documentation:
● EPICS R3.14 Channel Access Reference Manual by Jeff Hill et al.

● Available in <base>/html, or from the EPICS web site

■ This lecture covers
● Fundamental API concepts and routines

● Data types and usage

● Template examples

http://www.aps.anl.gov/epics/base/R3-14/12-docs/CAref.html

AES EPICS Training — May 2013 — CA Client APIs

3

Search and Connect to a PV

use lib '/path/to/base/lib/perl';
use CA;

my @access = ('no ', '');

my $chan = CA->new($ARGV[0]);
CA->pend_io(1.0);

printf "PV: %s\n", $chan->name;
printf " State: %s\n", $chan->state;
printf " Server: %s\n", $chan->host_name;
printf " Access rights: %sread, %swrite\n",
 $access[$chan->read_access], $access[$chan->write_access];
printf " Data type: %s\n", $chan->field_type;
printf " Element count: %d\n", $chan->element_count;

■ This is the basic cainfo program in Perl (without friendly error reporting)

AES EPICS Training — May 2013 — CA Client APIs

4

Search and Connect in C

#include <stdio.h>
#include "cadef.h"

char *connState[] = {"Never", "Previously", "Connected", "Closed"};
#define access(v) (v ? "" : "no ");

int main(int argc, char **argv) {
 chid chan;

 SEVCHK(ca_create_channel(argv[1], NULL, NULL, 0, &chan),
 "Create channel failed");
 SEVCHK(ca_pend_io(1.0), "CA Search failed");

 printf("PV: %s\n", ca_name(chan));
 printf(" State: %s\n", connState[ca_state(chan)]);
 printf(" Server: %s\n", ca_host_name(chan));
 printf(" Access rights: %sread, %swrite\n",
 access(ca_read_access(chan)), access(ca_write_access(chan));
 printf(" Data type: %s\n", dbr_type_to_text(ca_field_type(chan)));
 printf(" Element count: %u\n", ca_element_count(chan));
}

AES EPICS Training — May 2013 — CA Client APIs

5

Get and Put a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1.0);

$chan->get;
CA->pend_io(1.0);
printf "Old Value: %s\n", $chan->value;

$chan->put($ARGV[1]);
CA->pend_io(1.0);

$chan->get;
CA->pend_io(1.0);
printf "New Value: %s\n", $chan->value;

■ This is the basic caput program in Perl (without friendly error reporting)

AES EPICS Training — May 2013 — CA Client APIs

6

Get and Put in C

#include <stdio.h>
#include "cadef.h"

int main(int argc, char **argv) {
 chid chan;
 dbr_string_t value;

 SEVCHK(ca_create_channel(argv[1], NULL, NULL, 0, &chan),
 "Create channel failed");
 SEVCHK(ca_pend_io(1.0), "Search failed");

 SEVCHK(ca_get(DBR_STRING, chan, &value), "Get failed");
 SEVCHK(ca_pend_io(1.0), "Pend I/O failed");
 printf("Old Value: %s\n",);

 SEVCHK(ca_put(DBR_STRING, chan, argv[2]), "Put failed");
 SEVCHK(ca_pend_io(1.0), "Pend I/O failed");

 SEVCHK(ca_get(DBR_STRING, chan, &value), "Get failed");
 SEVCHK(ca_pend_io(1.0), "Pend I/O failed");
 printf("New Value: %s\n",);
}

AES EPICS Training — May 2013 — CA Client APIs

7

Monitor a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1.0);

$chan->create_subscription('v', \&val_callback);
CA->pend_event(0.0);

sub val_callback {
 my ($chan, $status, $data) = @_;
 if (!$status) {
 printf "PV: %s\n", $chan->name;
 printf " Value: %s\n", $data;
 }
}

■ This is a basic camonitor program in Perl (without error checking)

AES EPICS Training — May 2013 — CA Client APIs

8

Monitor in C

#include <stdio.h>
#include "cadef.h"

void val_callback(struct event_handler_args eha) {
 if (eha.status == ECA_NORMAL) {
 printf("PV: %s\n", ca_name(eha.chid));
 printf(" Value: %s\n", (const char *) eha.dbr);
 }
}

int main(int argc, char **argv) {
 chid chan;

 SEVCHK(ca_create_channel(argv[1], NULL, NULL, 0, &chan),
 "Create channel failed");
 SEVCHK(ca_pend_io(1.0), "Search failed");

 SEVCHK(ca_create_subscription(DBR_STRING, 1, chan, DBE_VALUE,
 val_callback, NULL, NULL),"Subscription failed");
 SEVCHK(ca_pend_event(0.0), "Pend event failed");
}

AES EPICS Training — May 2013 — CA Client APIs

9

Handling Errors

■ What happens if the PV search fails, e.g. the IOC isn't running, or it's busy and takes
longer than 1 second to reply?
● In Perl:

□ CA->pend_io(1.0) throws a Perl exception (die)

□ Program exits after printing:

ECA_TIMEOUT - User specified timeout on IO operation expired at test.pl line 5.

□ We could trap that exception using
eval {CA->pend_io(1)};
if ($@ =~ m/^ECA_TIMEOUT/) { ... }

● In C:
□ ca_pend_io(1.0) returns ECA_TIMEOUT

□ SEVCHK() prints a message and calls abort()

■ Problem with these approaches:
● How to write a program that doesn't require the IOC to be running when it starts up?

AES EPICS Training — May 2013 — CA Client APIs

10

Event-driven Programming

■ First seen when setting up the CA monitor:
$chan->create_subscription('v', \&val_callback);
CA->pend_event(0.0);

● The CA library will run the val_callback subroutine whenever the server sends a new data
value for this channel

● The program must be inside a call to CA->pend_event() or CA->pend_io() for the CA
library to execute callback routines
□ Multi-threaded C programs can avoid this requirement (Perl programs can't)

□ Callbacks are executed by other threads created inside the CA library

■ Most CA functionality can be event-driven

■ It is legal to call most CA routines from within a callback subroutine
● The main exceptions are ca_poll(), ca_pend_event() and ca_pend_io()

AES EPICS Training — May 2013 — CA Client APIs

11

Event-driven PV Search and Connect

use lib '/path/to/base/lib/perl';
use CA;

my @chans = map {CA->new($_, \&conn_callback)} @ARGV;
CA->pend_event(0);

sub conn_callback {
 my ($chan, $up) = @_;
 printf "PV: %s\n", $chan->name;
 printf " State: %s\n", $chan->state;
 printf " Host: %s\n", $chan->host_name;
 my @access = ('no ', '');
 printf " Access rights: %sread, %swrite\n",
 $access[$chan->read_access], $access[$chan->write_access];
 printf " Data type: %s\n", $chan->field_type;
 printf " Element count: %d\n", $chan->element_count;
}

■ The cainfo program using callbacks

AES EPICS Training — May 2013 — CA Client APIs

12

Event-driven Search and Connect in C

#include <stdio.h>
#include "cadef.h"

char *connState[] = {"Never", "Previously", "Connected", "Closed"};
#define access(v) (v ? "" : "no ");

void conn_callback(struct ca_connection_handler_args cha) {
 printf("PV: %s\n", ca_name(cha.chid));
 printf(" State: %s\n", connState[ca_state(cha.chid)]);
 printf(" Server: %s\n", ca_host_name(cha.chid));
 printf(" Access rights: %sread, %swrite\n",
 access(ca_read_access(cha.chid)), access(ca_write_access(cha.chid));
 printf(" Data type: %s\n", dbr_type_to_text(ca_field_type(cha.chid)));
 printf(" Element count: %u\n", ca_element_count(cha.chid));
}

int main(int argc, char **argv) {
 for (int i = 1; i < argc; i++) {
 chid chan;
 SEVCHK(ca_create_channel(argv[i], conn_callback, NULL, 0, &chan),
 "Create channel failed");
 }
 SEVCHK(ca_pend_event(0.0), "Pend event returned");
}

AES EPICS Training — May 2013 — CA Client APIs

13

Event-driven PV Monitor

use lib '/path/to/base/lib/perl';
use CA;
my @chans = map {CA->new($_, \&conn_cb)} @ARGV;
CA->pend_event(0);
sub conn_cb {
 my ($ch, $up) = @_;
 if ($up && ! $monitor{$ch}) {
 $monitor{$ch} = $ch->create_subscription('v', \&val_cb);
 }
}
sub val_cb {
 my ($ch, $status, $data) = @_;
 if (!$status) {
 printf "PV: %s\n", $ch->name;
 printf " Value: %s\n", $data;
 }
}

■ The camonitor program using callbacks

AES EPICS Training — May 2013 — CA Client APIs

14

Event-driven Monitor in C

■ Student exercise:
● Write a program in C that

□ Accepts a list of PV names from the command line

□ Connects to these PVs and monitors them for value changes

□ Prints the new values to stdout as they arrive

□ Still works properly after an IOC reboot

● Look at previous slides, or the CA Reference Manual

● Don't worry about compiling it yet

AES EPICS Training — May 2013 — CA Client APIs

15

Data Types for C code

■ CA routines take an integer type argument to indicate the data type to transfer

■ These are macros defined in db_access.h
● Name Macro Data Type Type Definition

DBR_CHAR dbr_char_t epicsInt8 any, num
DBR_SHORT dbr_short_t epicsInt16 any, num
DBR_LONG dbr_long_t epicsInt32 any, num
DBR_FLOAT dbr_float_t epicsFloat32 any, num
DBR_DOUBLE dbr_double_t epicsFloat64 any, num
DBR_ENUM dbr_enum_t epicsUInt16 any
DBR_STRING dbr_string_t char [40] any

● DBR_STS_any struct dbr_sts_any { alrm, val }
DBR_TIME_any struct dbr_time_any { alrm, stamp, val }
DBR_GR_num struct dbr_gr_num { alrm, units, disp, val }
DBR_CTRL_num struct dbr_ctrl_num { alrm, units, disp, ctrl, val }

DBR_GR_ENUM struct dbr_gr_enum { alrm, no_str, strs[], val }
DBR_CTRL_ENUM struct dbr_ctrl_enum { alrm, no_str, strs[], val }
DBR_PUT_ACKT dbr_put_ackt_t epicsUInt16
DBR_PUT_ACKS dbr_put_acks_t epicsUInt16
DBR_STSACK_STRING struct dbr_stsack_string { alrm, ackt, acks, val }
DBR_CLASS_NAME dbr_class_name_t char [40]

AES EPICS Training — May 2013 — CA Client APIs

16

Excerpt from db_access.h

/*
 * DBR_CTRL_DOUBLE returns a control double structure (dbr_ctrl_double)
 */

/* structure for a control double request */
struct dbr_ctrl_double{
 dbr_short_t status; /* status of value */
 dbr_short_t severity; /* severity of alarm */
 dbr_short_t precision; /* number of decimal places */
 dbr_short_t RISC_pad0; /* RISC alignment */
 char units[MAX_UNITS_SIZE]; /* units of value */
 dbr_double_t upper_disp_limit; /* upper limit of graph */
 dbr_double_t lower_disp_limit; /* lower limit of graph */
 dbr_double_t upper_alarm_limit;
 dbr_double_t upper_warning_limit;
 dbr_double_t lower_warning_limit;
 dbr_double_t lower_alarm_limit;
 dbr_double_t upper_ctrl_limit; /* upper control limit */
 dbr_double_t lower_ctrl_limit; /* lower control limit */
 dbr_double_t value; /* current value */
};

AES EPICS Training — May 2013 — CA Client APIs

17

Array Data

■ Calls to ca_xxx() are equivalent to ca_array_xxx() with a count of 1

■ The ca_element_count() macro gives the maximum possible array size
● Value is sent by the server just once, at connection time

■ Arrays can contain less data; the IOC knows the current array size
● Before Base release 3.14.12 the CA library would always add zero values after the valid array

elements to fill it up to the maximum size (or the size requested)

■ From Base 3.14.12 onward, you can pass a count of 0 into ca_array_get_callback()
and ca_create_subscription() to fetch only the valid array elements
● The callback is given the number of elements provided

□ This will never be greater than ca_element_count()

● For subscription callbacks, that number may be different every time

AES EPICS Training — May 2013 — CA Client APIs

18

String Handling

■ A dbr_string_t value (DBR_STRING field) uses a fixed length 40 character buffer
● A terminating zero will always be present

● Some record fields can only hold fewer characters, e.g. EGU

■ Longer strings can be stored in a dbr_char_t array
● Waveform record type, or some other array field

● A terminating zero element might not be present

■ Newer IOCs also support accessing string fields as a DBR_CHAR array
● A terminating zero should be present

AES EPICS Training — May 2013 — CA Client APIs

19

Specifying Data Types in Perl

■ Most of the Perl I/O routines handle the channel data types automatically
● $chan->get fetches one element in the channel’s native type

□ Value is returned by $chan->value

□ Arrays are not supported, no type request possible

● $chan->get_callback(SUB) fetches all elements in the channel’s native data type
□ Optional TYPE and COUNT arguments to override

● $chan->create_subscription(MASK, SUB) requests all elements in the
channel’s native type
□ Optional TYPE and COUNT arguments to override

● $chan->put(VALUE) puts values in the channel’s native type
□ VALUE may be a scalar or an array

● $chan->put_callback(SUB, VALUE) puts values in the channel’s native data type
□ VALUE may be a scalar or an array

AES EPICS Training — May 2013 — CA Client APIs

20

Perl Data Type Parameters

■ The TYPE argument is a string naming the desired DBR_xxx type

■ The COUNT argument is the integer number of elements

■ If the data contains multiple elements, the callback subroutine’s $data argument
becomes an array reference

■ If the data represents a composite type, the callback subroutine’s $data argument
becomes a hash reference
● The hash elements included are specific to the type requested

● See the Perl CA Library documentation for more details

AES EPICS Training — May 2013 — CA Client APIs

21

Multi-threading

■ The CA client library is thread-aware
● Can be used in both single- and multi-threaded environments

● Uses threads internally, 2 per server it connects to

● Callbacks are usually executed by one of the server-specific threads

■ Applications can configure callbacks to be run preemptively
● By default, callbacks are only run when the application is inside ca_pend_io(),

ca_poll() or ca_pend_event()

● Call ca_context_create(ca_enable_preemptive_callback); to change that

● The application is then responsible for using mutexes to protect shared resources etc.

■ Use ca_current_context() and ca_attach_context() to share a single CA client
context between multiple application threads

AES EPICS Training — May 2013 — CA Client APIs

22

Ideal CA client?

■ Register and use callbacks for everything
● Event-driven programming; polling loops or fixed time outs

● On connection, check the channel’s native type
□ Limit the data type conversion burden on the IOC

● Subscribe for DBE_PROPERTY updates using the DBR_CTRL_type
□ This provides the full channel detail (units, limits, …)

□ Future IOCs will send property events when those attributes change

● Subscribe for value updates using DBR_TIME_type to get time+alarm+value

● Only subscribe once at first connection; the CA library automatically re-activates
subscriptions after a disconnect/reconnect
□ However, be prepared in case the channel's native type changes (rare, but this can happen)

■ This gives updates without having to poll for changes

AES EPICS Training — May 2013 — CA Client APIs

23

Quick Hacks, Scripts

■ In many cases, scripts written in bash/perl/python/php can just invoke the
command-line ‘caget’ and ‘caput’ programs

■ Especially useful if you only need to read/write one PV value and not subscribe to
value updates

■ CA Client library bindings are available for Perl, Python & PHP
● Perl bindings are included in EPICS Base (not on MS Windows)

● You have to find, build and update them for Python and PHP
□ Your script may be portable, but you still have to install the CAC-for-p* binding separately for Linux,

Win32, MacOS…

AES EPICS Training — May 2013 — CA Client APIs

24

Base caClient template

■ EPICS Base Includes a makeBaseApp.pl template that builds two basic CA client
programs written in C:
● Run this:

mkdir client && cd client
../base/bin/darwin-x86/makeBaseApp.pl -t caClient cacApp
make

● Builds two programs:
bin/darwin-x86/caExample pvName
bin/darwin-x86/caMonitor pvListFile

AES EPICS Training — May 2013 — CA Client APIs

25

caClient Example Programs

■ caExample.c
● Minimal CA client program

● Fixed timeout, waits until data arrives

● Requests everything as DBR_DOUBLE

■ caMonitor.c
● Better CA client program

● Registers callbacks for connections, exceptions, access rights

● Subscribes for value updates
□ Only uses one data type (DBR_STRING) for everything

	Slide 1
	Channel Access
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Excerpt from db_access.h
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Ideal CA client?
	Quick Hacks, Scripts
	makeBaseApp.pl
	makeBaseApp's caExample.c

