Finding, Deploying and Managing EPICS I/O Support Modules

Andrew Johnson
APS Engineering Support Division
Outline

- Meaning of I/O Support
- Review of IOC development environment
- Development areas as components
- Distinguishing Support Modules and IOC Applications
- Managing change in Support and IOC top areas
- Different ways to support I/O devices
- Finding existing software
- Deploying support modules
 - Installing software
 - Using it in an IOC
Meaning of “I/O support”

- Software that connects one or more record types to some real hardware
 - At minimum contains device support code
 - May include record or driver support as well
 - Also covers any additional software needed by those layers
 - Not necessarily EPICS-specific code

- May comprise multiple separate software packages, e.g.:
 - drvIpac Octal232 serial port support
 - Asyn Serial interfacing software framework
 - Device Support Specific commands for the target serial device

- Might provide database templates, SNL programs and MEDM screens
 - SynApps does this for beamline devices
 - Not appropriate for all kinds of I/O
IOC Development Environment Review

<top>

configure
 RELEASE
 CONFIG
 Other build-system files
xxxApp
 src
 C & SNL sources, .dbd files
 Db
 .db files, templates & substitutions
locBoot
 locxxxx
 st.cmd
Installation directories:
 dbd, db, include, bin/<arch>, lib/<arch>
Development Areas as Components

- The `<top>` structure and Makefile rules are designed to encourage modularity
 - An IOC is built up out of many components
 - Channel access, database access, scanning, other core libraries
 - Record, device & driver support
 - Databases
 - Sequence programs
 - Etc.
 - Components do not have to be defined in the same `<top>` as the IOC itself
 - Most of the IOC software comes from Base
 - Other `<top>` areas can provide additional components
 - Other `<top>` areas can override (replace) components from Base
- The configure/RELEASE file determines what other `<top>` areas will be searched for required components, and in what order
 - Only the installation directories of other `<top>` areas are searched
Support Modules vs. IOC Applications

- Most sites distinguish between `<top>` areas that provide commonly-used components, and those that build IOCs
 - Record, Device and driver support are usually shared by many IOCs
 - Having multiple copies of source files is a recipe for disaster
 - Different engineers maintain device support than IOCs
 - The life-cycles of the two are usually very different
- Areas that provide components are Support Modules
- Areas that build IOCs are IOC Applications
- IOC areas use entries in `configure/RELEASE` to indicate which support apps they will use components from
- IOC areas may contain local record/device/driver support, but only for hardware that is not used in in any other IOC subsystem
Managing Change: Support Modules

- Support modules usually only change when a bug is fixed, or some new functionality is added
 - It should be a deliberate decision by the engineer responsible for an IOC or subsystem to use a new version of a support module
 - Bug fixes can introduce new bugs elsewhere
 - New functionality might include changes that break old applications

- Therefore: once installed and in use by an operational IOC application, a support module’s `<top>` area should never be changed
 - New versions of the module should be installed alongside the old one
 - The engineer responsible for an IOC subsystem can switch to the new version when s/he is ready for it by changing the IOC Application's `<top>/configure/RELEASE` file to point to the new version
 - The old version is not deleted until it will never be required again
 - It’s easy to revert to a previous version if problems are found
 - Disk space is cheap

- Sites should document what changed in each update of a support module, and should notify IOC engineers that a new version is available
Managing Change: IOC Applications

- IOC applications change very frequently in small ways
 - Updating alarm limits, revised sequences, adding new I/O points etc.
- It should be relatively easy to modify the files that configure an IOC (databases, subroutines, sequence programs etc.)
 - Elaborate version control procedures make it harder to respond to change requests, so less change will happen or the procedures get ignored
- However it is important to retain the history of what application changes were made, when and by whom
 - Being able to quickly back out of recent modifications can be essential to recovering from incorrect changes
- This is very different to the requirements of managing a support application
 - Do not attempt to use the same approach to manage both
Ways to support I/O devices

- **Hardware-specific device and/or record support**
 - Best solution if already available
 - Recommended if there will be multiple instances
 - Communications protocol can be hidden from users and usually from EPICS applications developers
 - Much easier to handle any device peculiarities
 - May be essential for complex devices

- **Generic support**
 - Available for general-purpose bus, serial, and network connected I/O
 - Device-specific knowledge is contained in database records
 - Special fields in a custom record
 - Parm field of a hardware link address
 - Not possible for complex devices or protocols
Finding existing software

- See if someone else at your site already uses it (different Base version?)
- Debian Linux: Check packages in NSLS-2 repository
 http://epics.nsls2.bnl.gov/debian/
- Supported Hardware database on EPICS website
- Past EPICS Collaboration meeting talks
- Tech-talk mailing list
 - Search the archives, then post a message and ask
- Google Search
Code conversion/porting

- Some existing support modules may have been written for Base 3.13.x on VxWorks
 - Porting to R3.14 is relatively easy
 - Porting to RTEMS is slightly harder
 - Should be straightforward if the software uses devLib
 - Porting to Linux is inadvisable for VME or PCI-based hardware
 - Linux Kernel drivers are hard to write and debug

- Serial or network-based device support can be made as portable as Base
 - The Asyn framework simplifies this process
Installing the software
- If installation instructions are provided, read & follow them!
 - SynApps users should read the synApps README file
 - The synApps configuration system is slightly different

- Prerequisites:
 - EPICS Base R3.14.x built for the desired architecture(s)
 - All other support modules needed have already been built
Deploying: Configure the module

- Extract the source file to the required location using tar/unzip/...
- Edit the configure/RELEASE file
 - Set the EPICS_BASE variable pointing to the Base directory
 - Set any other required paths in the file as appropriate, e.g.:
 \[IPAC=/opt/epics/R3.14.12.4/drvIpac-2.12\]
 \[ASYN=/opt/epics/R3.14.12.4/asyn-4.22\]
 - You may define other variables and use the Makefile $(variable) syntax
 \[\text{SUPPORT}=/opt/epics/R3.14.12.4\]
 \[\text{EPICS_BASE}=$(\text{SUPPORT})/base-3.14.12.4\]
 \[\text{IPAC}=$(\text{SUPPORT})/drvIpac-2.12\]
 \[\text{ASYN}=$(\text{SUPPORT})/asyn-4.22\]
 - Variables that name other support modules must expand to absolute paths beginning with a '/'; relative paths will not work
 - '..' is allowed as a component within an absolute path
Deploying: Build the module

- Run GNU make in the <top> directory
 - To simultaneously log the output to a file, use these commands
 - bash, ksh: `make 2>&1 | tee build.out`
 - csh, tcsh: `make >& tee build.out`
 - This checks the configure/RELEASE file for consistency with the support modules named, and generates files in configure/O.<arch>
 - Then it descends through the other subdirectories of <top>, compiling and installing products as necessary
Using Support in an IOC Application

- Mostly very specific to the Support Module
- General steps are
 - Add a line to the IOC Application's configure/RELEASE file that points to the new module's <top> directory
    ```bash
    ASYN=$(SUPPORT)/asyn-4.22
    ```
 - Edit the Makefile where the IOC is built
 - Add a line for each library to be linked against
      ```bash
      example_LIBS += asyn
      ```
 - Add a line for any .dbd files to be included
      ```bash
      example_DBD += asyn.dbd
      ```
 - Alternatively this might become a line in exampleInclude.dbd:
      ```bash
      include "asyn.dbd"
      ```
 - Add any necessary lines to the st.cmd file
 - Create record instances, instantiate templates, etc.
 - Rebuild the IOC Application from <top>
    ```bash
    make rebuild
    ```