Fly and trajectory scans

Tim Mooney
2/27/2015
Fly-scan choices

• **Software fly scan**
 – Data acquired while positioners move at constant speed
 – Detectors triggered by software
 • Periodically, or at user-specified time intervals
 – Positions acquired by software along with detector data
 – Few-ms dead time between data points
 – No cabling required

• **Hardware fly scan**
 – Data acquired while positioners move
 – Detectors triggered by pulses from positioner
 • Periodically
 • At user-specified positions
 – Positions implied or acquired by multichannel scaler
 • Arraycalc “cum” function reconstructs motor positions from scaler data
 – No dead time between points
 – Need cable from selected motor to selected detector(s)
Hardware fly choices

• Constant speed (from now on, “Hardware fly scan”)
 – Positioner moves at constant speed
 – Positioner can be moved by motor record
 – Specify StartPos, EndPos, NPTS, and Speed
 – May be able to specify data-acquisition positions
 • Requires supported motor or external hardware

• Trajectory (from now on, “Trajectory scan”)
 – Motor moves along specified trajectory
 – Use trajectory controls
 – Specify trajectory positions and times
 – Specify data-acquisition positions
 • Details depend on controller
 – Requires supported motor
Software fly scan

- **Requirements:**
 - positioner speed can be set
 - position updates periodically or on demand
 - scan manager (e.g., sscan record)

- **User interface:**
 - Differences from step scan
Software fly scan

• Remarks:
 – Positioner speed and detector-dwell time must be set
 – Imprecise synchronization between data and recorded positions
 – Limited to <~ 10 Hz

• PVs: (values in green: user’s choice)

Same as for step scan:
- $(scan).ACQT = SCALAR$
- $(scan).P1PV = $(motor).VAL$
- $(scan).R1PV = $(motor).RBV$
- $(scan).T1PV = $(scaler).CNT$
- $(scan).DnnPV = scaler.T$
- $(scan).P1SP = 0$
- $(scan).P1EP = 5$
- $(scan).NPTS = 10$
- $(scanner).TP = .5$

Modified for software fly scan:
- $(scan).P1SM = FLY$
- $(motor).VELO = 1.0$
Hardware fly scan requirements

- Positioner can output pulses during nontrajectory move
 - Any stepper motor (with external divide-by-N)
 - Aerotech Ensemble with EnsemblePSOFly database
 - Probably other servo motors can do this

- Hardware-triggered detector can cache or stream scan data
 - MCS (Struck multichannel scaler)
 - XIA DXP
 - Some cameras

- Data-storage client
 - sscan record (saveData)
 - spec
 - areaDetector plugin
Hardware fly scan

- User interface:
 - Differences from software fly scan:
Hardware fly scan

• Remarks:
 – positioner speed must be set
 – detector must be prepared and started before motor moves

• PVs:

 Same as for software fly scan:
 $(\text{scan}).P1PV = $(\text{motor}).VAL
 $(\text{scan}).P1SM = \text{FLY}
 $(\text{scan}).P1SP = 0
 $(\text{scan}).P1EP = 5
 $(\text{scan}).NPTS = 10
 $(\text{motor}).VELO = 1.0

 Modified for hardware fly scan:
 $(\text{scan}).ACQT = 1\text{D ARRAY}$
 $(\text{scan}).BSPV = $(\text{mcs}):\text{EraseStart}$
 $(\text{scan}).BSWAIT = \text{NoWait}$
 $(\text{scan}).A1PV = $(\text{mcs}):\text{StopAll}$
 $(\text{mcs}):\text{PresetReal} = 0$
 $(\text{mcs}):\text{ChannelAdvance} = \text{External}$
 $(\text{mcs}):\text{Channel1Source} = \text{Int. clock}$
 $(\text{scan}).D01PV = $(\text{mcs}):\text{mca1.VAL}$
 $(\text{mcs}):\text{Prescale} = 2500$
 $(\text{mcs}):\text{CountOnStart} = \text{Yes}$
 $(\text{mcs}):\text{NuseAll} = 1000$
 $(\text{scan}).R1PV = \text{not used}$
 $(\text{scan}).T1PV = \text{not used}$
Trajectory scan requirements

• Controller can move motor along trajectory
 – Newport MM4005 or XPS
 – In motor R6-9, Aerotech Ensemble or Pro-Dex (OMS) MAXv

• Controller can generate position-synchronized pulses

• Position-table generator
 – E.g., spec, arraycalc, python, etc.

• Hardware-triggered detector can cache or stream scan data
 – Same as hardware fly scan

• Data-storage client
 – Same as hardware fly scan
Trajectory scan

- User interface:
 - Differences from hardware fly scan:
Trajectory scan

• Remarks:
 – Trajectory must be loaded
 – Detector must be prepared and started before motor moves

• PVs:

 Same as for hardware fly scan:
 \[
 \begin{align*}
 &$(scan).ACQT = \text{1D ARRAY} \\
 &$(mcs):\text{PresetReal} = 0 \\
 &$(mcs):\text{ChannelAdvance} = \text{External} \\
 &$(mcs):\text{Channel1Source} = \text{Int. clock} \\
 &$(scan).\text{NPTS} = 10 \\
 &$(scan).D01PV = $(mcs):\text{mca1.VAL} \\
 &$(mcs):\text{NuseAll} = 1000 \\
 &$(scan).R1PV = \text{not used}
 \end{align*}
 \]

 Modified for trajectory scan:
 \[
 \begin{align*}
 &$(scan).T1PV = $(traj):\text{Execute} \\
 &$(mcs):\text{Prescale} = 1 \\
 &$(scan).\text{BSWAIT} = \text{Wait} \\
 &$(scan).\text{BSPV} = \text{prepForTraj} \\
 &$(scan).\text{A1PV} = \text{prepData} \\
 &$(mcs):\text{CountOnStart} = \text{No} \\
 &$(traj):* = \text{many choices} \\
 &$(scan).\text{P1PV} = \text{not used} \\
 &$(motor).\text{VELO} = \text{not used} \\
 &$(scan).\text{P1SP} = \text{not used} \\
 &$(scan).\text{P1EP} = \text{not used} \\
 &$(scan).\text{P1SM} = \text{not used}
 \end{align*}
 \]
Trajectory definition

• Number of trajectory elements
• Array of positions for each motor
 – Ensemble: only one motor
• Array of times
 – Can be specified as total time
• Number of output pulses, start/end element
 – MM4005: pulses evenly spaced in distance along trajectory
 – XPS: pulses evenly spaced in time
 – Ensemble: pulses evenly spaced in distance, or at trajectory points
 • Under development: at user-specified positions
 – For MAXv: pulses only at trajectory points
• Absolute/Relative/Hybrid position mode
 – Currently, Ensemble and MAXv don’t support Hybrid mode
• MAXv has timing problems in very slow motion
Detector-trigger options

1. **motor/encoder**
 - \(\div N \)
 - \(\div 1 \)
 - \(\div N(i) \)

 - e.g., step-motor hardware fly
 - e.g., trajectory, ensemblePSOFly
 - e.g., tableFly

2. **softGlue**
 - \(\div N(i) \)
 - \(\div 1 \)

 - detector
Examples

• 1ide hexFly (hard fly scan)
 – EnsemblePSOfly.db with evenly spaced data-gate signals

• 2bmb, 32idc tomography fly (hard fly scan)
 – EnsemblePSOfly.db with evenly spaced data-trigger signals

• 2bmb interlace fly (hard fly scan)
 – EnsemblePSOfly.db with user-specified data-trigger signals
 • tableFly.db uses softGlue to generate triggers from motor pulses
 • interlaceFly.db programs tableFly
 – Acquire at ~100 Hz for ~30 minutes

• 15idd USAXS fly (trajectory scan)
 – Ensemble and MAXv trajectories with user-specified data-trigger signals
 – Rotation stage (Ensemble) executes exponential trajectory
 – Translation stages (MAXv) execute commensurate trajectories

• Gradient mirror deposition system (trajectory motion)
 – Ensemble trajectory
 – support installed, but not connected to higher-level software
Plans, possibilities

• Database support for “automatic” soft fly scans
• Database/softGlue support for “automatic” hard fly scans
• Ensemble multiple-motor trajectory support
• ID/monochromator fly scan
• Relax ensemblePSOFly motor-config constraints
• Implement *Hybrid* mode for Ensemble/MAXv trajectory
• Implement Ensemble and MAXv trajectory in model-3 driver