
1

A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Argonne National Laboratory

Office of Science
U.S. Department of Energy

Channel Access Servers
Kenneth Evans, Jr.

October 8, 2004

Part of the EPICS “Getting Started” Lecture Series

2

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Outline
• Channel Access Concepts
• Types of Servers
• Server Examples
• Server Application Programming Interface [API]

3

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

EPICS Overview

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

Channel Access

4

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Search and Connect Procedure

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

3. TCP Connection

Let’s talk !

1. UDP Broadcast Sequence

Who has it ?

Check Check CheckCheck

2. UDP Reply

I have it !

IOC

2

5

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Search Request

• A search request consists of a sequence of UDP packets
- Only goes to EPICS_CA_ADDR_LIST
- Starts with a small interval (30 ms), that doubles each time
- Until it gets larger than 5 s, then it stays at 5 s
- Stops after 100 packets or when it gets a response
- Never tries again until it sees a beacon anomaly or creates a

new PV (Continues to search at a lower rate in 3.14.7)
- Total time is about 8 minutes to do all 100

• Servers have to do an Exist Test for each packet
• Usually connects on the first packet or the first few
• Non-existent PVs cause a lot of traffic

- Try to eliminate them
6

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

• A Beacon is a UDP broadcast packet sent by a Server
• When it is healthy, each Server broadcasts a UDP beacon at

regular intervals (like a heartbeat)
- EPICS_CA_BEACON_PERIOD, 15 s by default

• When it is coming up, each Server broadcasts a startup
sequence of UDP beacons
- Starts with a small interval (25 ms, 75 ms for VxWorks)
- Interval doubles each time
- Until it gets larger than 15 s, then it stays at 15 s

- Takes about 10 beacons and 40 s to get to steady state

• Clients monitor the beacons
- Determine connection status, whether to reissue searches

Beacons

7

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Environment Variables

• CA Client
EPICS_CA_ADDR_LIST
EPICS_CA_AUTO_ADDR_LIST
EPICS_CA_CONN_TMO
EPICS_CA_BEACON_PERIOD
EPICS_CA_REPEATER_PORT
EPICS_CA_SERVER_PORT
EPICS_CA_MAX_ARRAY_BYTES
EPICS_TS_MIN_WEST

• See the Channel Access Reference Manual for more
information

• CA Server
EPICS_CAS_SERVER_PORT
EPICS_CAS_AUTO_BEACON_ADDR_LIST
EPICS_CAS_BEACON_ADDR_LIST
EPICS_CAS_BEACON_PERIOD
EPICS_CAS_BEACON_PORT
EPICS_CAS_INTF_ADDR_LIST
EPICS_CAS_IGNORE_ADDR_LIST

8

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Channel Access Reference Manual
• The place to go for more information
• Found in the EPICS web pages

- http://www.aps.anl.gov/epics/index.php
- Look under Documents
- Also under Base, then a specific version of Base

• There is not as much information on servers as on clients

3

9

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Types of Servers

• RSRV: Server for IOCs and Soft IOCs
- IOCs: Typically run in instrument crates
- Soft IOCs: Typically run on workstations
- Runs iocCore and uses the EPICS database

- Has records, fields, etc.
- Described in the next set of lectures

• CAS: Channel Access Server or Portable server
- Runs on workstations
- Plan is to have it replace RSRV so there is only one server
- Has whatever process variables you want to provide

- Probably does not have records, fields, etc.
- Could have a different naming convention

- xxx.yyy.zzz%VAL
10

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Soft IOCs
• Soft IOCs may be a better choice than CAS
• Easier to implement

- Are essentially the same as IOCs
- Except they run on workstations

• Better documented
• Have the database, records, and fields of a real IOC
• And you don’t have to write and maintain an application

11

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

CAS Examples

• Gateway
- Both a CAC and a CAS
- Gets its process variables from other servers (CAC part)
- Serves them to clients (CAS part)

• CaSnooper
- Keeps track of Exist Tests
- Prints reports about them
- Used to track nonexistent process variables
- Publishes some process variables

• Excas
- Sample server
- Comes with base

12

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

No Gateway

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

4

13

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Gateway

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Server
Client

Meter Power Supply Camera

IOC

14

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Diagnostics via Internal PVs

15

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

CaSnooper

16

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Sample CaSnooper Output

Not connected, will be C
for connected (hardly

ever the case)

Print top 10 (-p10)

Check top 10 (-c10)

machine:port, (can be
used to identify source)

Name

Search rate in Hz

Statistics
Individual name, prefix

5

17

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Control CaSnooper via MEDM

Shell command to start
CaSnooper, MEDM,
StripTool, etc.

Use these to set what
will happen when you
press Report. Case
illustrated will print the
top 10.

Cartesian plot of
requestRate and
individualRate

Individual rate for
CaSnoop.test, which
doesn’t exist

Request rate

Execute selected reports
in the CaSnooper stdout

Reset the counters in
CaSnooper

Stop CaSnooper

CaSnooper was started here (with
EPICS_CA_REPEATER_PORT
= default=5065)

18

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Excas
• Stands for Example Channel Access Server
• Source files are in

- epics/base/templates/makeBaseApp/top/caServerApp
- See the README file there

• Should also be an executable in
- epics/base/bin/solaris-sparc/excas

• Usage
excas [-d<debug level> -t<execution time>
-p<PV name prefix> -c<numbered alias count>
-s<1=scan on (default), 0=scan off>
-ss<1=synchronous scan (default), 0=asynchronous scan>]

• Example
excas –pevans:

• Makes a good starting point for your server

19

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Making a Project for Excas
• Make a standalone project outside the build system

cd example
perl epics/base/bin/solaris-sparc/makeBaseApp.pl

-t caServerApp myserver

- Do a make in example (It also makes example/myserverApp)
- Executable is example/bin/solaris-sparc/casexample

• Make an extension
cd epics/extensions/src/excas
cp epics/base/templates/makeBaseApp/top/

caServerApp/* .
- In Makefile change “TOP=..” to “TOP=../..”
- Do a make in excas
- Excutable is in excas/O.solaris-sparc/casexample

• Change PROD_HOST in Makefile to excas if you like
20

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Excas Process Variables

1YesDBR_DOUBLE-10.010.0"billy"-1.0
100000NoDBR_DOUBLE-10.010.0"bloaty"-1.0

1NoDBR_DOUBLE-10.010.0"bill"-1.0
1YesDBR_ENUM-10.010.0"booty"-1.0
1NoDBR_ENUM-10.010.0"boot"-1.0

1000NoDBR_DOUBLE-10.010.0"albert"20.0
100NoDBR_DOUBLE-10.010.0"alan"2.0
1YesDBR_DOUBLE-10.010.0"freddy"2.0
1YesDBR_DOUBLE0.010.0"janet".1
1NoDBR_DOUBLE-10.010.0"fred"2.0
1NoDBR_DOUBLE0.010.0"jane".1

CountAsyncTypeLOPRHOPRNameScan
Period

6

21

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

CAS
• Stands for Channel Access Server

- Counterpart to Channel Access Client [CAC]
• Has two parts

- The Server Library: CAS code
- The Server Tool: Your code

• Is a C++ application
• Definitions are in casdef.h
• You inherit from one of the CAS classes

- caServer casAsyncWriteIO
- casPV casAsyncPVExistIO
- casChannel casAsyncPVAttachIO
- casAsyncReadIO

• Most of the methods are virtual but not pure virtual
22

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

3.13 and 3.14 Differences
• CAC

- Much effort has gone into making 3.13 clients work with 3.14
- You do not have to change your code*

- CAC for 3.14 is threaded
• CAS

- Channel Access Servers are significantly different in 3.14
- You have to change your code
- Especially for timing routines

- osiTime vs. epicsTime
- CAS is not threaded in either version

* Minor changes may be necessary depending on your coding

23

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Terminology
• Server Library:

- CAS routines
• Server Tool:

- Your routines
- Your server inherits from caServer
- Has a number of PVs inherited from casPV

• PV or casPV:
- Corresponds to a process variable in an IOC
- Has a number of channels
- Your PV inherits from casPV

• Channel or casChannel:
- Corresponds to a client attachment to your PV

• This presentation will use casPV instead of PV to avoid
confusion with client PVs

24

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

GDD
• Stands for General Data Descriptor

- Way to describe, hold, and manage scalar and array data
- How CAS passes data around

• There are three types of GDDs
- Scalar One “thing”
- Vector Array of “things”, possibly multi-dimensional
- Container Collection of GDDs

• GDD data types
- Primitive type (aitEnum, See aitTypes.h)

- aitEnumInt32, aitEnumFloat32, aitEnumString, etc.
- Application type (unsigned, See gddApps.h)

- “precision”, “graphicHigh”, “severity”, “value”, etc.
• gddApplicationTypeTable::AppTable (See gddAppTable.h)

- Your way to access what CAS uses

7

25

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

GDD, cont’d
• Reference counting

- GDDs are reference counted
- When the count goes to zero, the destructor is called
- Allows them to be passed around

• A complete treatment of GDD would require a lecture in itself
• Best course is to look at some examples

- Keep your internal data in a GDD
- Use gddApplicationTypeTable functions and smartGDDPointer

- getDD, smartCopy
• The reference manual for GDD is at

- http://www.aps.anl.gov/asd/controls/epics/EpicsDocumentation/
EpicsGeneral/gdd.html

• Also see
- epics/base/src/gdd

26

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

casdef.h

• All C++ programs must include casdef.h
- #include <casdef.h>

• You can look at this file to get more insight into CAS
• It is the instruction manual

27

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Basic Procedure for a Channel Access Server
• Inherit from the appropriate CAS classes

- caServer
- casPV
- casChannel

• Establish a loop to call fileDescriptionManager.process
- fileDescriptionManager.process(delay);

• Respond to searches
- pvExistTest

• Create PVs
- pvAttach (formerly createPV)

• Respond to read, write, and other request from CAS
• Post events and other information to CAS

• CAS passes this all to and from the clients in your behalf
28

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

fileDescriptorManager
• CAS does its work in fileDescriptorManager.process

- Similarly to ca_pend in CAC
• Typical main loop

double delay=.01 // 10 ms
while(1) {

// Let CAS do its stuff
fileDescriptorManager.process(delay);
// Do your stuff here
...

}

• fileDescriptor is an external instance of fdManager
- fdManager::fileDescriptorManager;
- Instantiated by CAS

8

29

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

caServer
class caServer {

friend class casPVI;
public:

caServer ();
virtual ~caServer() = 0;

virtual pvExistReturn pvExistTest (const casCtx & ctx,
const caNetAddr & clientAddress,
const char * pPVAliasName);

virtual pvAttachReturn pvAttach (const casCtx &ctx,
const char *pPVAliasName);

casEventMask registerEvent (const char *pName);
casEventMask valueEventMask () const; // DBE_VALUE
casEventMask logEventMask () const; // DBE_LOG
casEventMask alarmEventMask () const; // DBE_ALARM

30

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

caServer
void setDebugLevel (unsigned level);
unsigned getDebugLevel () const;
virtual void show (unsigned level) const;
unsigned subscriptionEventsPosted () const;
unsigned subscriptionEventsProcessed () const;
class epicsTimer & createTimer ();
void generateBeaconAnomaly ();

private:
class caServerI * pCAS;
// Deprecated
virtual class pvCreateReturn createPV (
const casCtx & ctx, const char * pPVAliasName);

virtual pvExistReturn pvExistTest (
const casCtx & ctx, const char * pPVAliasName);

};

31

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

pvExistTest
• Called by CAS when it needs to determine if a PV exists

- Whenever it gets a search request packet
• Is a virtual method
• Two overloaded versions

- New one also gives access to the caNetAddr
- Can be used to get the host name

- Old one is now deprecated
• Three possible returns

- pverExistsHere (I have it)
- pverDoesNotExistHere (I don’t have it)
- pverAsynchCompletion (I’ll tell you later)

• You can have aliases for your casPVs and respond to the
aliases

32

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

pvAttach
• Called by CAS when a client attaches to the PV
• Used to be called createPV, now deprecated
• Is a virtual method
• You can create your casPV here or return it if it already exists
• Return value

- return casPV by pointer or reference
- S_casApp_pvNotFound (No PV by that name here)
- S_casApp_noMemory (Not enough resources)
- S_casApp_asyncCompletion (I’ll tell you later)

9

33

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

registerEvent
• You call this to obtain an event mask for a new event type that

you want to implement in postEvent
• You specify the name of the event
• It is for future use and is not implemented

- You can post events with this mask but nothing will happen
• There is no need to use it

34

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

value, alarm, and logEventMask
• You call these functions to obtain masks to use in postEvent
• The event types are

- Value: Value changed
- Alarm: Alarm status or severity changed
- Log: Your casPV exceeded the archival dead band

• You need to do this

35

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

show
• You call this to show the state of your server
• Is mostly used for debugging
• Is a virtual method

- Implements whatever you want to print for each debug level
- Level is an integer starting at 0
- Higher typically gives more information

- You can call the base class show to get information from CAS
- caServer::show
- Highest possible level is not defined for the CAS part

- Allows the implementation to change
• Appears in other CAS classes, not just caServer

- caServer Server state information
- casPV Information for that casPV
- casChannel Information for that casChannel

36

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

get and setDebugLevel
• You call this to set the protocol trace level

- Causes messages to be printed at each send and receive
• Used for debugging

- If you understand Channel Access in depth
• You probably won’t use this

10

37

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

subscriptionEventsPosted and Processed
• You call these to get statistics on the number of events posted

and processed
• They should be similar if you are keeping up
• Is optional

- Used by the Gateway

38

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

createTimer
• You call this to create a timer using the same timer queue that

CAS is using
• Is equivalent to calling fileDescriptorManager.createTimer
• You can also create your own timer queue

- CAS queue is currently passive (not preemptive)
- Yours can be active (preemptive)

39

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

generateBeaconAnomaly
• You call this if you want to generate extra beacon anomalies

- Indicating a server coming up
• Normally you do not want to and should not do this

- CAS does the usual beacon anomalies for you
• The Gateway does this when an IOC on its client side

reconnects
- To notify clients to retry their searches

40

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

casPV
class casPV {
public:

casPV ();
virtual ~casPV ();
virtual void show (unsigned level) const;
virtual caStatus interestRegister ();
virtual void interestDelete ();
virtual caStatus beginTransaction ();
virtual void endTransaction ();
virtual caStatus read (const casCtx &ctx,
gdd &prototype);

virtual caStatus write (const casCtx &ctx,
const gdd &value);

virtual casChannel * createChannel (
const casCtx &ctx, const char * const pUserName,
const char * const pHostName);

virtual aitEnum bestExternalType () const;

11

41

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

casPV
virtual unsigned maxDimension () const;
virtual aitIndex maxBound (unsigned dimension)const;
virtual void destroy ();
void postEvent (const casEventMask & select,
const gdd & event);

virtual const char * getName () const = 0;
caServer * getCAS () const;
void destroyRequest ();

private:
casPVI * pPVI;
casPV & operator = (const casPV &);
friend class casStrmClient;

public:
// Deprecated
casPV (caServer &);

};

42

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

show
• Similar to caServer::show

43

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

interestRegister and interestDelete
• CAS calls these when

- a client starts monitoring your casPV
- At first ca_add_subscription

- no client is any longer monitoring your casPV
- At last ca_clear_subscription

• Allows you to perhaps save resources when nobody is using
your casPV

44

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

beginTransaction and endTransaction
• CAS calls these at the beginning and end of transactions

- Transactions are reads and writes
• Allows you to do pre and post processing
• Currently not very useful

- May be used in the future for block reads, etc.
• You probably won’t use this

12

45

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

read and write
• Called by CAS when it want to read or write your casPV

- Which is when a client wants to
• You fill in the GDD or read from it and return the status
• Return values

- S_casApp_success (OK)
- S_casApp_asyncCompletion (I’ll do it later)
- S_casApp_postponeAsyncIO (You do it later)
- S_casApp_noSupport (I don’t handle that)
- S_casApp_noMemory (I’m in trouble)
- Others in casdef.h

46

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

createChannel
• Called by CAS whenever a client attaches to a PV
• You don’t have to implement it unless you are keeping channel

information
• You probably don’t need channel information unless you are

implementing access security

47

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

bestExternalType
• You return the “native” type of your casPV

typedef enum { // See aitTypes.h
aitEnumInvalid=0,
aitEnumInt8,
aitEnumUint8,
aitEnumInt16,
aitEnumUint16,
aitEnumEnum16,
aitEnumInt32,
aitEnumUint32,
aitEnumFloat32,
aitEnumFloat64,
aitEnumFixedString,
aitEnumString, // This is the default
aitEnumContainer } aitEnum;

48

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

maxDimension and maxBound
• You return an unsigned int for maxDimension and an aitIndex

(= aitUint32 = unsigned int) for maxBound
- Scalar: 0
- Array: 1

- maxBounds(0) supplies number of elements in array
- Plane: 2

- maxBounds(0) supplies number of elements in X dimension
- maxBounds(1) supplies number of elements in Y dimension

- Cube : 3
- maxBounds(0) supplies number of elements in X dimension
- maxBounds(1) supplies number of elements in Y dimension
- maxBounds(2) supplies number of elements in Z dimension

• The default maxDimension returns 0 (scalar) and the default
maxBound returns 1 (scalar bounds) for all dimensions

13

49

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

destroy
• Called by CAS

- When last client becomes unattached
- For each casPV when the server is deleted

• Is a virtual method
- You can do whatever you want

• If you don’t implement it, CAS calls your destructor
• Allows you to clean up
• Note that your casChannels are destroyed before your casPV

50

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

postEvent
• You call this when you want to post an event

- Owing to changes in your casPV
- You pass a GDD by reference

51

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

getName
• CAS calls this to ask for the name of your casPV
• CAS does not store your name

- You have responsibility for the name
• The pointer must remain valid for the life of the casPV
• You should return the base name when there are aliases

52

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

getCAS
• You call this when you want to get the caServer associated

with this channel
• Is a convenience function

14

53

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

destroyRequest
• CAS calls this when it is ready to destroy your casPV
• Afterward

- It calls your virtual destroy method
- It unlinks your casPV from the library

• Do not call it yourself
• There seems to be no reason to use this

54

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

casChannel
class casChannel {
public:

casChannel (const casCtx & ctx);
virtual ~casChannel ();
virtual void setOwner (const char * const pUserName,
const char * const pHostName);

virtual bool readAccess () const;
virtual bool writeAccess () const;
virtual bool confirmationRequested () const;
virtual caStatus beginTransaction ();
virtual void endTransaction ();
virtual caStatus read (const casCtx &ctx,
gdd &prototype);

virtual caStatus write (const casCtx &ctx,
const gdd &value);

virtual void show (unsigned level) const;
virtual void destroy ();

55

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

casChannel
void postAccessRightsEvent ();
casPV * getPV ();
void destroyRequest ();

private:
class casChannelI * pChanI;
casChannel (const casChannel &);
casChannel & operator = (const casChannel &);
friend class casStrmClient;

};

56

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

setOwner
• You call this when you want change the user or host name
• Not usually done

15

57

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

readAccess and writeAccess
• Called by CAS to determine access before each read and write
• Used if you implement access security
• Access security is done at the casChannel level

- Since it depends on the client

58

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

confirmationRequested
• You call this
• It is designed to implement another type of write request

- Where the client has to confirm before writing
- Example:

- “Setting this will shut down the whole project. Are you sure?”
• It is not implemented
• You should not use it

59

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

beginTransaction and endTransaction
• Similar to casPV::beginTransaction and endTransaction
• CAS calls these at the beginning and end of transactions

- Transactions are reads and writes
• Allows you to do pre and post processing
• Currently not very useful

- May be used in the future for block reads, etc.
• You probably won’t use this

60

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

read and write
• Called by CAS when it want to read or write your casChannel

- Which is when a client wants to
• If not implemented, it calls casChannel::read or

casChannel::write
• You usually do not implement these for the casChannel

- Do it for the casPV

16

61

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

show
• Similar to caServer::show

62

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

destroy
• Called by CAS

- When the client becomes unattached
• Similar to casPV::destroy
• Is a virtual method

- You can do whatever you want
• If you don’t implement it, CAS calls your destructor
• Allows you to clean up
• Note that your casChannels are destroyed before your casPV

63

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

postAccessRightsEvent
• You call this when you want to change the access rights
• Used if you implement access security

64

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

getPV
• You call this when you want to get the casPV associated with

this channel
• Is a convenience function

17

65

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

destroyRequest
• CAS calls this when it is ready to destroy your casChannel
• Similar to casPV::destroyRequest
• Afterward

- It calls your virtual destroy method
- It unlinks your casChannel from the library

• Do not call it yourself
• There seems to be no reason to use this

66

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Asynchronous IO
• There are several classes to let you implement asynchronous

input / output
caServer::pvExistTest() use casAsyncPVExistIO
caServer::pvAttach() use casAsyncPVAttachIO
casPV::read() use casAsyncReadIO
casPV::write() use casAsyncWriteIO

• Create the appropriate casAsyncXxxIO
- CAS will delete it for you when the time comes

• Return the status code S_casApp_asyncCompletion
• Use postIOCompletion to inform the server library that the

requested operation has completed.

67

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Acknowledgements
• Jeff Hill [LANL] is responsible for EPICS Channel Access and

has developed almost all of it himself
• He also wrote RSRV, the server for IOCs
• This presentation has benefited significantly from discussions

with Jeff, both concerning the presentation and over the years

68

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Thank You

This has been an
APS Controls Presentation

18

69

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Thank You

This has been an
APS Controls Presentation

