
ASYN Device Support
Framework

W. Eric Norum

2006-11-20

ASYN

• What is it?
• What does it do?
• How does it do it?
• How do I use it?

What is it?

Asynchronous Driver Support is a
general purpose facility for
interfacing device specific code to
low level communication drivers

The problem – Duplication of effort

The problem – Duplication of effort

• Each device support has its own asynchronous I/O Dispatcher

– All with different degrees of support for message concurrency and
connection management

The problem – Duplication of effort

• Each device support has its own set of low-level drivers

– All with different driver coverage

The problem – Duplication of effort

• Not possible to get all users to switch to one devXXX

– Many 10s of thousands of record instances
– 100s of device support modules

The problem – Duplication of effort

• R3.14 makes the situation a whole lot worse:

– Adds another dimension to the table – multiple architectures
– vxWorks, POSIX (Linux, Solaris, OS X), Windows, RTEMS

The solution – ASYN

The solution – ASYN

• Cost
– Device support code must be rewritten

The solution – ASYN

• Cost
– Device support code must be rewritten
– Drivers must be rewritten

The solution – ASYN

• Cost
– Device support code must be rewritten
– Drivers must be rewritten

– Hmmm….sounds like, “Be reasonable, do it my way”.

Have we just added another column to the ‘problem’ figure?

The solution – ASYN

• Cost
– Device support code must be rewritten
– Drivers must be rewritten

– Hmmm….sounds like, “Be reasonable, do it my way”

Have we just added another column to the ‘problem’ figure?
• Benefit

– Rewrite driver once – works with *all* types of device support
– Drivers are now an O(1) problem rather than an O(n) problem

• Several drivers done – O(0) problem

The solution – ASYN

• Cost
– Device support code must be rewritten
– Drivers must be rewritten

– Hmmm….sounds like, “Be reasonable, do it my way”.

Have we just added another column to the ‘problem’ figure?
• Benefit

– Rewrite driver once – works with *all* types of device support
– Drivers are now an O(1) problem rather than an O(n) problem

• Several drivers done – O(0) problem

– Common connection management

The solution – ASYN

• Cost
– Device support code must be rewritten
– Drivers must be rewritten

– Hmmm….sounds like, “Be reasonable, do it my way”.

Have we just added another column to the ‘problem’ figure?
• Benefit

– Rewrite driver once – works with *all* types of device support
– Drivers are now an O(1) problem rather than an O(n) problem

• Several drivers done – O(0) problem

– Common connection management
• And it even works! – Passes the ‘Dalesio’ test

ASYN status

asyn Architecture

Device support (or SNL code,
another driver, or non-EPICS

software)

device device

Port (named object)

Port driver

addr=0 addr=1

Interfaces (named;
pure virtual functions)

asynCommon
(connect, report, …)

asynOctet (write,
read, setInputEos,…)

Control flow – asynchronous driver

Control flow – synchronous driver

ASYN Components – asynManager

• Provides thread for each communication interface

– All driver code executes in the context of this thread
• Provides connection management

– Driver code reports connect/disconnect events
• Queues requests for work

– Nonblocking – can be called by scan tasks
– User-supplied callback code run in worker-thread context makes calls to

driver
– Driver code executes in a single-threaded synchronous environment

• Handles registration

– Low level drivers register themselves

– Can ‘interpose’ processing layers

ASYN Components – asynCommon

• A group of methods provided by all drivers:

– Report
– Connect
– Disconnect

– Set option

– Get option
• Options are defined by low-level drivers
• e.g., serial port rate, parity, stop bits, handshaking

ASYN Components – asynOctet

• Driver or interposed processing layer
• Methods provided in addition to those of asynCommon:

– Read
– Write

– Set end-of-string character(s)

– Get end-of-string character(s)
• All that’s needed for serial ports, ‘telnet-style’ TCP/IP devices
• The single-threaded synchronous environment makes driver development

much easier
– No fussing with mutexes

– No need to set up I/O worker threads

ASYN Components – asynGpib

• Methods provided in addition to those of asynOctet:

– Send addressed command string to device
– Send universal command string
– Pulse IFC line

– Set state of REN line

– Report state of SRQ line
– Begin/end serial poll operation

• Interface includes asynCommon and asynOctet methods
– Device support that uses read/write requests can use asynOctet drivers.

 Single device support source works with serial and GPIB!

ASYN Components – asynRecord

• Diagnostics

– Set device support and driver diagnostic message masks
– No more ad-hoc ‘debug’ variables!

• General-purpose I/O

– Replaces synApps serial record and GPIB record
• Provides much of the old ‘GI’ functionality

– Type in command, view reply
– Works with all asyn drivers

• A single record instance provides access to all devices in IOC

asynRecord

• EPICS record that provides access to
most features of asyn, including standard
I/O interfaces

• Applications:
— Control tracing (debugging)
— Connection management
— Perform interactive I/O

• Very useful for testing, debugging, and
actual I/O in many cases

• Replaces the old generic “serial” and
“gpib” records, but much more powerful

asynRecord – asynOctet devices

Interactive I/O to serial device

Configure serial port parameters

Perform GPIB specific operations

asynRecord – register devices

Same asynRecord, change to ADC port Read ADC at 10Hz with asynInt32 interface

asynRecord – register devices

Same asynRecord, change to DAC port Write DAC with asynFloat64 interface

Tracing and Debugging

• Standard mechanism for printing diagnostic messages
in device support and drivers

• Messages written using EPICS logging facility, can be
sent to stdout, stderr, or to a file

• Device support and drivers call:
– asynPrint(pasynUser, reason, format, ...)
– asynPrintIO(pasynUser, reason, buffer, len,

format, ...)
– Reason:

• ASYN_TRACE_ERROR
• ASYN_TRACEIO_DEVICE
• ASYN_TRACEIO_FILTER
• ASYN_TRACEIO_DRIVER
• ASYN_TRACE_FLOW

• Tracing is enabled/disabled for (port/addr)
• Trace messages can be turned on/off from iocsh,

vxWorks shell, and from CA clients such as MEDM via
asynRecord

• asynOctet I/O from shell

Great – So how do I use it?

 Adding existing device support to an application
 Writing support for a message-based (asynchronous) device

• devGpib
• Streams
• Custom

 Writing support for a register-based (synchronous) device
 Dealing with interrupts

• ‘Completion’ interrupts
• ‘Trigger’ (unsolicited) interrupts

Adding ASYN instrument support to an application

Adding ASYN instrument support to an application

• This is easy because the instrument support developers always follow all
the guidelines – right?

• The following procedure is taken from:
How to create EPICS device support for a simple serial or GPIB device

Make some changes to configure/RELEASE

• Edit the configure/RELEASE file created by makeBaseApp.pl
• Confirm that the EPICS_BASE path is correct
• Add entries for ASYN and desired instruments
• For example:

• AB300 =/home/EPICS/modules/instrument/ab300/1-1
• ASYN =/home/EPICS/modules/soft/asyn/3-2
• EPICS_BASE=/home/EPICS/base

Modify the application database definition file

• If you are building your application database definition from an
xxxInclude.dbd file, then include the additional database definitions in that
file:
include "base.dbd"
include "devAB300.dbd"
include "drvAsynIPPort.dbd"
include "drvAsynSerialPort.dbd"

Modify the application database definition file

• If you are building your application database definition from the application
Makefile, you specify the additional database definitions there:
.
.
xxx_DBD += base.dbd
xxx_DBD += devAB300.dbd
xxx_DBD += drvAsynIPPort.dbd
xxx_DBD += drvAsynSerialPort.dbd
.
.

Add support libraries to the application

• You must link the instrument support library and the ASYN library with the
application

• Add the lines
xxx_LIBS += devAB300
xxx_LIBS += asyn

before the
xxx_LIBS += $(EPICS_BASE_IOC_LIBS)

line in the application Makefile

Modify the application startup script

dbLoadRecords(“db/devAB300.db”,”P=AB300:,R=,L=0,A=0”)

• P,R - PV name prefixes – PV names are (P)(R)name
• L - Link number from corresponding devxxxxConfigure command

 drvAsynIPPortConfigure("L0","192.168.3.137:4001",0,0,0)
• A - Device address

Writing ASYN instrument support

Guidelines for converting or writing instrument support

• Strive to make the instrument support useful by others
• Try to support all the capabilities of the instrument
• Keep names and functions as general as possible
• Stick to the prescribed source/library layout

Converting or writing instrument support?

• Strive to make the instrument support useable by others
• Try to support all the capabilities of the instrument
• Keep names and functions as general as possible
• Stick to the prescribed source/library layout
• Maybe even ship some documentation with your support

Recommended source file arrangement

• Instrument support is not tied to EPICS base
• Support should not depend upon other instrument support
• Support should not influence other instrument support
• Which means that:

– Instrument support is placed in CVS repository in
• <xxxxx>/modules/instrument/<instrumentname>/

– Each <instrumentname> directory contains
• Makefile
• configure/
• <InstrumentName>Sup/
• documentation/
• License

There’s a script to make this a little easier

• mkdir xxxx/modules/instrument/myinst
• cd xxxx/modules/instrument/myinst
• xxxx/modules/soft/asyn/bin/<arch>/makeSupport.pl -t devGPIB MyInst

Makefile

configure/
CONFIG Makefile RULES RULES_TOP

CONFIG_APP RELEASE RULES_DIRS

MyInstSup/

Makefile devMyInst.c devMyInst.db devMyInst.dbd

documentation/

devMyInst.html

• A few changes to the latter 4 files and you’re done!

Converting devGpib instrument support

Converting existing devGpib instrument support

See “Updating devGPIB instrument support to ASYN” in the ASYN documentation
• Use makeSupport.pl to create a new instrument support area
• Copy the existing ‘.c’, ‘.db’ and ‘.dbd’ files to the new support area
• Make some changes to the ‘.c’ file

– Remove a bunch of lines
– Make a minor change to each command table entry
– Change the device-support initialization

• Make some minor changes to the ‘.db’ file
• Build -- test -- release

Example of converted instrument support

• Simple digital voltmeter – Keithley 196
• ~130 lines removed
• 2 lines added
• ~22 lines changed
• More complex device would have about the same number of lines removed

and added, but would have more lines changed
– mostly by rote

• Changes shown on following pages – don’t worry about the details
• Somewhat artificial example

– Very simple device

– Didn’t abide by “Make generally useful; Fully support” rules

Writing devGpib instrument support

Applies to serial and network devices too!

For instruments such as:

• Those connected to local GPIB ports (vxWorks-only)
– IP-488
– NI-1014

• Those connected to remote GPIB ports

– Agilent E5810, E2050
– Tektronix AD007

• Those connected to local serial ports (e.g. COM1:, /dev/ttyS0)
• Those connected to remote serial ports (e.g. MOXA box)
• Serial-over-Ethernet devices (‘telnet-style’)
• VXI-11 Ethernet devices (e.g., Tektronix TDS3000 oscilloscopes)

New support for a message-based instrument (devGPIB)

•• /<path>/makeSupport.pl -t devGpib <InstrumentName>
• Confirm configure/RELEASE entries for ASYN and BASE
• Modify InstrumentNameSup/devInstrumentName.c

• Specify appropriate TIMEOUT and TIMEWINDOW values
• Specify tables of command/response strings and record initialization

strings (if needed)
• Write any custom conversion or I/O routines
• Set respond2Writes as appropriate (in init_ai routine)
• Fill in the command table

• dset, type, priority, command, format, rsplen, msglen, convert, P1,
P2, P3, pdevGpibNames, eos

New support for a message-based instrument (devGPIB)

• /* Param 0 - Identification string */

{&DSET_SI,GPIBREAD,IB_Q_LOW,"*IDN?","%39[^\n]",0,80,0,0,NULL,NULL,NULL},
• /* Param 3 -- Set frequency */

{&DSET_AO,GPIBWRITE,IB_Q_LOW,NULL,"FRQ %.4f HZ",0,80,NULL,0,0,NULL,NULL,NULL},
• static char *setDisplay[] = {"DISP:TEXT 'WORKING'","DISPLAY:TEXT:CLEAR”,NULL};

/* Param 2 Display Message: BO */

{&DSET_BO,GPIBEFASTO,IB_Q_HIGH,NULL,NULL,0,0,NULL,0,0,setDisplay,NULL,NULL},
• /* Param 3 Read Voltage: AI */

 {&DSET_AI,GPIBREAD,IB_Q_HIGH,"MEAS:VOLT:DC?","%lf",0,80,NULL,0,0,NULL,NULL,NULL},
• /* Param 20 -- read amplitude */

{&DSET_AI,GPIBREAD,IB_Q_LOW,"IAMP",NULL,0,60,convertVoltage,0,0,NULL,NULL,NULL},

dset, type, priority, command, format, rsplen, msglen, convert, P1, P2, P3, pdevGpibNames, eos

New support for a message-based instrument (devGPIB)
static int
convertVoltage(gpibDpvt *pgpibDpvt, int P1, int P2, char **P3)
{
 aiRecord *pai = (aiRecord *)pgpibDpvt->precord;
 asynUser *pasynUser = pgpibDpvt->pasynUser;
 double v;
 char units[4];

 if (sscanf(pgpibDpvt->msg, P1 == 0 ? "AMP %lf %3s" : "OFS %lf %3s", &v, units) != 2) {
 epicsSnprintf(pasynUser->errorMessage, pasynUser->errorMessageSize, "Scanf failed");
 return -1;
 }
 if (strcmp(units, "V") == 0) {
 } else if (strcmp(units, "MV") == 0) {
 v *= 1e-3;
 } else {
 epicsSnprintf(pasynUser->errorMessage, pasynUser->errorMessageSize, "Bad units");
 return -1;
 }
 pai->val = v;
 return 0;
}

Writing ASYN instrument support

asynManager – Methods for drivers

• registerPort
– Flags for multidevice (addr), canBlock, isAutoConnect
– Creates thread for each asynchronous port (canBlock=1)

• registerInterface
– asynCommon, asynOctet, asynInt32, etc.

• registerInterruptSource, interruptStart, interruptEnd
• interposeInterface
• Example code:

 pPvt->int32Array.interfaceType = asynInt32ArrayType;

 pPvt->int32Array.pinterface = (void *)&drvIp330Int32Array;

 pPvt->int32Array.drvPvt = pPvt;

status = pasynManager->registerPort(portName,

 ASYN_MULTIDEVICE, /*is multiDevice*/

 1, /* autoconnect */

 0, /* medium priority */

 0); /* default stack size */

status = pasynManager->registerInterface(portName,&pPvt->common);

status = pasynInt32Base->initialize(pPvt->portName,&pPvt->int32);

pasynManager->registerInterruptSource(portName, &pPvt->int32,

 &pPvt->int32InterruptPvt);

asynManager – asynUser

• asynUser data structure. This is the fundamental “handle” used by asyn.
asynUser = pasynManager->createAsynUser(userCallback process,userCallback timeout);
asynUser = pasynManager->duplicateAsynUser)(pasynUser, userCallback queue,userCallback

timeout);
typedef struct asynUser {
 char *errorMessage;
 int errorMessageSize;
 /* The following must be set by the user */
 double timeout; /*Timeout for I/O operations*/
 void *userPvt;
 void *userData;
 /*The following is for user to/from driver communication*/
 void *drvUser;
 /*The following is normally set by driver*/
 int reason;
 /* The following are for additional information from method calls */
 int auxStatus; /*For auxillary status*/
}asynUser;

Standard Interfaces

Common interface, all drivers must implement
• asynCommon: report(), connect(), disconnect()

I/O Interfaces, most drivers implement one or more
• All have write(), read(), registerInteruptUser() and cancelInterruptUser() methods
• asynOctet: writeRaw(), readRaw(), flush(), setInputEos(), setOutputEos(),

getInputEos(), getOutputEos()
• asynInt32: getBounds()
• asynInt32Array:
• asynUInt32Digital:
• asynFloat64:
• asynFloat64Array:

Miscellaneous interfaces
• asynOption: setOption() getOption()
• asynGpib: addressCommand(), universalCommand(), ifc(), ren(), etc.
• asynDrvUser: create(), free()

ASYN API

• Hey, what with terms like ‘methods’ and ‘instances’ this looks
very object-oriented – howcome the API is specified in C?

• "I made up the term 'object-oriented', and I can tell you I didn't have C++ in
mind" – Alan Kay (The inventor of Smalltalk and of many other interesting
things), OOPSLA '97

Generic Device Support

• asyn includes generic device support for many standard EPICS records and
standard asyn interfaces

• Eliminates need to write device support in many cases. New hardware can
be supported by writing just a driver.

• Record fields:
– field(DTYP, “asynInt32”)
– field(INP, “@asyn(portName, addr, timeout) drvParams)

• Examples:
– asynInt32

• ao, ai, mbbo, mbbi, longout, longin
– asynInt32Average

• ai
– asynUInt32Digital, asynUInt32DigitalInterrupt

• bo, bi, mbbo, mbbi
– asynFloat64

• ai, ao
– asynOctet

• stringin, stringout, waveform

Generic Device Support – ledDriver.c

1-10 – Standard headers (cantProceed.h for callocMustSucceed, devLib.h for
devWriteProbe)

12-15 – Define location of 8-bit I/O port in CPU memory space
20-24 – Driver private storage declaration. One asynInterface structure for

each interface provided by this driver.
30-47 – asynCommon methods. All must be present even if empty. Connect

and disconnect methods call back to asynManager to register the
connection state.

52-60 – asynInt32 methods. Only those needed for this device need be present
(see line 98 for why this is true).

65 – Registration routine. Called from within startup script command:
xxx_registerRecordDeviceDriver(pdbbase)

72 – Allocate the driver private storage (why not static??)
74-77 – Verify that hardware really exists
80-84 – Register the port (single-address, synchronous, auto-connect)
86-93 – Register the asynCommon support provided by this driver
95-102 – Register the asynInt32 support provided by this driver. Note that the

pasynInt32Base initialize method is invoked. This provides default methods
for all methods not mentioned on line 60 and then invokes registerInterface.

103 – Export the registration routine (so it gets called from IOC startup script)

Generic Device Support – ledDriver.dbd

registrar(ledDriverDeviceSupportRegistrar)

Generic Device Support – ledDriver.db

record(longout,"leds") {

 field(DTYP,"asynInt32")

 field(OUT,"@asyn(ledDriver 0 0)")

}

Generic Device Support – acquisitionControl.c

• 14 - uint32Digital – since no mbbiDirect, mbboDirect in asynInt32
• 41 - Probe in connect method rather than registration routine
• 47 - Multiple addresses per port
• 78 - Read method
• 149 - Register port with multiple-address attribute
• 165 - Invoke registerInterface directly (all needed methods provided)

Generic Device Support – acquisitionControl.db
record(mbbiDirect, "$(P)ClockFaultMBBI") {

 field(DESC, "Clock status")

 field(DTYP, "asynUInt32Digital")

 field(INP, "@asynMask(acquisitionControlReg,0,0xFFFF,0)")

 field(SCAN, "2 second")

}

record(bo, "$(P)ClockFaultRbkFrc") {

 field(DESC, "Force clock fault readback")

 field(OUT, "$(P)ClockFaultMBBI.PROC")

}

record(longout, "$(P)ClockFaultClrLO") {

 field(DESC, "Reset clock faults")

 field(DTYP, "asynUInt32Digital")

 field(OUT, "@asynMask(acquisitionControlReg,0,0xFFFF,0)")

 field(FLNK, "$(P)ClockFaultRbkFrc”)

}

Generic Device Support – acquisitionControl.db
record(mbbiDirect, "$(P)P0SelectMBBI") {

 field(DESC, "P0 selection")

 field(DTYP, "asynUInt32Digital")

 field(INP, "@asynMask(acquisitionControlReg,1,0xFFFF,0)")

 field(SCAN, "2 second") }

record(bo, "$(P)P0SelectRbkFrc") {

 field(DESC, "Force P0 select readback")

 field(OUT, "$(P)P0SelectMBBI.PROC") }

record(mbbo, "$(P)P0SelectMBBO") {

 field(DESC, "P0 selection")

 field(DTYP, "asynUInt32Digital")

 field(OUT, "@asynMask(acquisitionControlReg,1,0x1,0)")

 field(ZRVL, 0) field(ZRST, "PLL C0")

 field(ONVL, 1) field(ONST, "PLL C3")

 field(FLNK, "$(P)P0SelectRbkFrc") }

Generic Device Support – fpgaProgrammingInfo.c

• 12 - asynOctet – but synchronous
• 26 - another place for the table of methods
• 56 - read configuration information from FPGA ROM
• 88 - IOCshell command rather than EPICS registrar for configuration
• 137 - Set up table of methods
• 164-169 - Register IOCshell command

Generic Device Support – fpgaProgrammingInfo

record(stringin, "(P)(R)FPGACompileTimeSI") {

 field(DESC, "FPGA compile date/time")

 field(DTYP, "asynOctetRead")

 field(INP, "@asyn($(PORT) 0 0)")

 field(SCAN, "Passive")

 field(PINI, 1)

}

###

FPGA version information

devFpgaInfoConfigure("fpgaInfo",0x3800)

dbLoadRecords("db/fpgaProgrammingInfo.db","P=$(P),R=,PORT=fpgaInfo”)

Dealing with interrupts

‘Solicited’ interrupts

• e.g., command/response completion
• e.g., txEmpty/rxFull
• Easy to deal with – driver works in blocking, single-threaded environment
• Use devConnectInterruptVME to associate handler with hardware interrupt
• Call epicsEventSignal from low-level interrupt handler
• Driver write method might look like:

 for(i = 0 ; i < numchars ; i++) {

send next character to device

epicsEventWaitWithTimeout(………);

}

‘Unsolicited’ interrupts
• Not quite as easy
• e.g., a trigger which will cause records with SCAN(“I/O Intr”) to process
• Driver initialization creates an task which waits for signal from low-level

interrupt handler (ASYN routines must not be called from low-level
handler)

• Configuration must invoke ASYN manager registerInterruptSource
• Allows subsequent use of interruptStart/End

• The standard interfaces asynInt32, asynInt32Array, asynUInt32Digital,
asynFloat64 and asynFloat64Array all support callback methods for
interrupts

• Callbacks can be used by device support, other drivers, etc.

static void intFunc(void *drvPvt)
{
...
for (i = pPvt->firstChan; i <= pPvt->lastChan; i++) {
 data[i] = (pPvt->regs->mailBox[i + pPvt->mailBoxOffset]);
 }
 /* Wake up task which calls callback routines */
 if (epicsMessageQueueTrySend(pPvt->intMsgQId, data, sizeof(data)) == 0)
...
}
static void intTask(drvIp330Pvt *pPvt)
{
while(1) {
 /* Wait for event from interrupt routine */
 epicsMessageQueueReceive(pPvt->intMsgQId, data, sizeof(data));
 /* Pass int32 interrupts */
 pasynManager->interruptStart(pPvt->int32InterruptPvt, &pclientList);
 pnode = (interruptNode *)ellFirst(pclientList);
 while (pnode) {
 asynInt32Interrupt *pint32Interrupt = pnode->drvPvt;
 addr = pint32Interrupt->addr;
 reason = pint32Interrupt->pasynUser->reason;
 if (reason == ip330Data) {
 pint32Interrupt->callback(pint32Interrupt->userPvt,
 pint32Interrupt->pasynUser,
 pPvt->correctedData[addr]);
 }
 pnode = (interruptNode *)ellNext(&pnode->node);
 }
 pasynManager->interruptEnd(pPvt->int32InterruptPvt);
...
}

Support for Interrupts – Ip330 driver

asynManager – Methods for Device Support

• Connect to device (port)
• Create asynUser
• Queue request for I/O to port

– asynManager calls callback when port is free
• Will be separate thread for asynchronous port

– I/O calls done directly to interface methods in driver
• e.g., pasynOctet->write()

• Example code:
 /* Create asynUser */

pasynUser = pasynManager->createAsynUser(processCallback, 0);

status = pasynEpicsUtils->parseLink(pasynUser, plink,

 &pPvt->portName, &pPvt->addr, &pPvt->userParam);

status = pasynManager->connectDevice(pasynUser, pPvt->portName, pPvt->addr);

status = pasynManager->canBlock(pPvt->pasynUser, &pPvt->canBlock);

pasynInterface = pasynManager->findInterface(pasynUser, asynInt32Type, 1);

...

 status = pasynManager->queueRequest(pPvt->pasynUser, 0, 0);

...

 status = pPvt->pint32->read(pPvt->int32Pvt, pPvt->pasynUser, &pPvt->value);

Standard Interfaces - drvUser

• pdrvUser->create(void *drvPvt, asynUser *pasynUser, const char *drvInfo, const
char **pptypeName, size_t *psize);

• drvInfo string is parsed by driver
• It typically sets pasynUser->reason to an enum value (e.g. mcaElapsedLive,

mcaErase, etc.)
• More complex driver could set pasynUser->drvUser to a pointer to something
• Example:
grecord(mbbo,"(P)(HVPS)INH_LEVEL") {
 field(DESC,"Inhibit voltage level")
 field(PINI,"YES")
 field(ZRVL,"0")
 field(ZRST,"+5V")
 field(ONVL,"1")
 field(ONST,"+12V")
 field(DTYP, "asynInt32")
 field(OUT,"@asyn($(PORT))INHIBIT_LEVEL")
}
status = pasynEpicsUtils->parseLink(pasynUser, plink,
 &pPvt->portName, &pPvt->addr, &pPvt->userParam);
pasynInterface = pasynManager->findInterface(pasynUser, asynDrvUserType,1);
status = pasynDrvUser->create(drvPvt,pasynUser,pPvt->userParam,0,0);

Lab session – Control ‘network-attached device’

• *IDN?
• Returns device identification string (up to 200 characters long)

• LOADAV?
• Returns three floating-point numbers (1, 5, 15 minute load average)

• CLIENT?
• Returns information about client

• VOLTAGE?
• Returns most recent voltage setting

• VOLTAGE x.xxxx
• Sets voltage

TCP Port 24742

