A

Argonne

NATIONAL
LABORATORY

... for a brighter future

UChicago »

Argonne

IS, Otfice

Introduction to the Channel Access
Client Library

Kenneth Evans, Jr.

Kay Kasemir

Channel Access Reference Manual

* The place to go for more information
* Found in the EPICS web pages
— http://www.aps.anl.gov/epics/index.php
— Look under Documents
— Also under Base, then a specific version of Base

http://www.aps.anl.gov/epics/index.php

EPICS Overview

Search and Connect Procedure

MEDM | | MEDM Client Client Client MEDM

/ \ \\3. TCP Connection

Let’s talk !
~N

// 2. UDI§\RepIy A ~ \1. UDP Broadcast Sequence
/ | have\jt ! > Who has it ?

/ \ ~ o

/ \ N

Check Check 10C Ch-eck

Search Request

* A search request consists of a sequence of UDP packets
— Only goes to EPICS_CA ADDR_LIST
— Starts with a small interval (30 ms), that doubles each time
— Until it gets larger than 5 s, then it stays at 5 s
— Stops after 100 packets or when it gets a response
— Never tries again until it sees a beacon anomaly or creates a new PV
— Total time is about 8 minutes to do all 100

oo L L L L

* Servers have to do an Exist Test for each packet
* Usually connects on the first packet or the first few
* Non-existent PVs cause a lot of traffic

— Try to eliminate them

Beacons

* A Beacon is a UDP broadcast packet sent by a Server

* When it is healthy, each Server broadcasts a UDP beacon at regular
intervals (like a heartbeat)

— EPICS_CA BEACON_PERIOD, 15 s by default

* When it is coming up, each Server broadcasts a startup sequence of UDP
beacons

— Starts with a small interval (25 ms, 75 ms for VxWorks)
— Interval doubles each time
— Until it gets larger than 15 s, then it stays at 15 s
* Takes about 10 beacons and 40 s to get to steady state

@ @ @ @ @

* Clients monitor the beacons
— Determine connection status, whether to reissue searches

Virtual Circuit Disconnect

* 3.13 and early 3.14
— Hang-up message or no response from server for 30 sec.
— If not a hang-up, then client sends “Are you there” query
— If no response for 5 sec, TCP connection is closed
— MEDM screens go white
— Clients reissue search requests
* 3.14.5 and later
— Hang-up message from server
— TCP connection is closed
— MEDM screens go white
— Clients reissue search requests

Virtual Circuit Unresponsive

* 3.14.5 and later

— No response from server for 30 sec.

— Client then sends “Are you there” query

— If no response for 5 sec, TCP connection is not closed
* For several hours, at least

— MEDM screens go white

— Clients do not reissue search requests
* Helps with network storms

— Clients that do not call ca_poll frequently get a virtual circuit disconnect
even though the server may be OK

* Clients written for 3.13 but using 3.14 may have a problem
* May be changed in future versions

Important Environment Variables

* EPICS _CA ADDR _LIST
— Determines where to search
— Is a list (separated by spaces)
© “123.45.1.255 123.45.2.14 123.45.2.108”
— Default is broadcast addresses of all interfaces on the host
* Works when servers are on same subnet as Clients
— Broadcast address
* Goes to all servers on a subnet
* Example: 123.45.1.255
* Use ifconfig —a on UNIX to find it (or ask an administrator)
* EPICS CA AUTO ADDR _LIST
— YES: Include default addresses above in searches
— NO: Do not search on default addresses
— If you set EPICS _CA ADDR_LIST, usually set this to NO

EPICS_CA_ADDR LIST

MEDM | | MEDM Client Client Client MEDM

NI
Broadcast AN Specifi
roadcas / \ N ~ - pecitic
123.45.1.255 // \\ ~ _123.45.2.108
~
/ \ g
Subnet 1 L/ \\, Iy Subnet 2
____________ N
/ \ 'Not Included

| | |
| | |
: Server 10C : ' 10C 10C :

| |

Other Environment Variables

* CA Client * CA Server
EPICS_CA_ADDR_LIST EPICS_CAS_SERVER_PORT

EPICS_CA AUTO_ADDR_LIST EPICS_CAS_AUTO _BEACON_ADDR_LIST
EPICS_CA CONN_TMO EPICS _CAS BEACON_ADDR_LIST
EPICS_CA BEACON_PERIOD EPICS _CAS BEACON_PERIOD

EPICS CA_REPEATER_PORT EPICS_CAS_BEACON_PORT

EPICS CA SERVER _PORT EPICS CAS_INTF_ADDR_LIST
EPICS_CA_MAX_ARRAY_BYTES EPICS_CAS_IGNORE_ADDR_LIST

EPICS_TS_MIN_WEST

 See the Channel Access Reference Manual for more information

A

Argonne

NATIONAL LABORATORY

Channel Access

* The main CA client interface is the "C" library that comes with EPICS base
— Internally uses C++, but APl is pure C.

* Almost all other CA client interfaces use that C library
— Exception: New pure Java JAC

Basic Procedure for a Channel Access Client

* Initialize Channel Access
— ca_task initialize or ca_context create
* Search
— ca_search_and_connect or ca_create _channel
* Do get or put
— ca_get or ca_put
* Monitor
— ca_add_event or ca_create subscription
* Give Channel Access a chance to work
— ca_poll, ca_pend_io, ca_pend_event
* Clear a channel
— ca_clear_channel
* Close Channel Access
— ca_task exit or ca_context_destroy

makeBaseApp.pl

* Includes a template for basic CA client in C:

— Start with this:
makeBaseApp. pl -t caCient cacApp
make

— Result:
bi n/ | i nux-x86/ caExanpl e <sone PV>
bi n/ 11 nux-x86/caMonitor <file with PV |ist>

— Then read the sources, compare with the reference manual, and edit/extend to suit
your needs.

makeBaseApp's caExample.c

* Minimal CA client program.
— Fixed timeout, waits until data arrives.
— Requests everything as 'DBR_DOUBLE".
* ... which results in values of C-type 'double’.

* See db_access.h header file for all the DBR ... constants and the
resulting C types or structures.

* In addition to the basic DBR_<type> requests, it is possible to request
packaged attributes like DBR _CTRL <type> to get { value, units, limits,
...} In one request.

Excerpt from db_access.h

/* values returned for each field type

&
* DBR_DOUBLE returns a doubl e precision floating point nunber
&
DBR_CTRL_DOUBLE returns a control double structure (dbr_ctrl _double)
*/
&

/* structure for a control double field */
struct dbr_ctrl _doubl e{

dbr_short _t stat us; /* status of value */

dbr _short _t severity; /* severity of alarm*/
dbr _short _t preci si on; /* nunmber of decinmal places */
dbr _short _t RI SC_pad0; /* RISC alignnment */

char uni ts[MAX_UNI TS_SI ZE]; /* units of value */

dbr _doubl e_t upper _disp_limt; /* upper limt of graph */
dbr _doubl e_t lower _disp_limt; /* lower limt of graph */
dbr _doubl e_t upper _alarmlimt;

dbr _doubl e_t upper_warning_limt;

dbr _doubl e_t | ower _warning_limt;

dbr _doubl e_t lower_alarmlimt;

dbr _doubl e_t upper _ctrl_limt; /* upper control limt */
dbr _doubl e_t lower_ctrl_limt; /* lower control limt */
dbr _doubl e_t val ue; /* current value */

A

Argonne

NATIONAL LABORATORY

makeBaseApp's caMonitor.c

* Better CA client program.
— Registers callbacks to get notified when connected ot disconnected
— Subscribes to value updates instead of waiting.
— ... but still uses the same data type (DBR_STRING) for everything.

Ideal CA client?

Use callbacks for everything
— no idle 'wait', no fixed time outs.
* Upon connection, check the channel's native type (int, double, string, ...)
— to limit the type conversion burden on the 10C.
* ... request the matching DBR_CTRL_<type> once
— to get the full channel detail (units, limits, ...).
... and then subscribe to DBR_TIME_<type> to get updates of only time/status/value
— so how we always stay informed, yet limit the network traffic.

— Only subscribe once, not with each connection, because CA client library will automatically re-
activate subscriptions!

This is what EDM, archiver, ... do.
— Quirk: They don't learn about online changes of channel limits, units,

Doing that via a subscription means more network traffic, and CA doesn't send designated events for
'meta information changed'.

A

Argonne

TORY

Side Note: SNL just to get CAC help

* This piece of SNL handles all the connection management and data type handling:

doubl e val ue;
assign value to "fred";
nmoni t or val ue;

* Extend into a basic 'camonitor’:

evfl ag changed,;
sync val ue changed,;

SS nonitor_pv
state check

when (ef Test AndC ear (changed))

printf("Value is now %\ n", value);
} state check

Quick Hacks, Scripts

* In many cases, one can get by just fine by invoking the command-line 'caget’

from within bash/perl/python/php.
* Especially if you only need to read/write one value of a PV, not a subscription!

* There are more elaborate CAC bindings available for perl/python/php
— But that means you have to find, build and later maintain these!
— A basic p* script is portable, but you'd have to install the CAC-for-p* binding
separately for Linux, Win32, MacOS...

Perl Example

use Engli sh;

Get the current value of a PV
Argumment: PV nane

Result: current val ue

sub caget ($)

{

nmy ($pv) = @RG

open(F, "caget -t $pv |") or die "Cannot run 'caget'\n";
$resul t =<F>;

cl ose(F);

chonp($result);

return $result;

}

Do stuff with PVs

$fred = caget("fred");

$j ane = caget ("jane");
$sum = $fred + $j ane;
printf("Sum 9%g\n", $sum;

A

Argonne

NATIONAL LABORATORY

Matlab '"MCA' Extension (Works with Octave as well)

Same setup & maintenance issue as for p/p/p!
— ... but may be worth it, since Matlab adds tremendous number crunching and graphing.
Initial setup
— Get MCA sources (see links on APS EPICS web)
— Read the README, spend quality time with MEX.
Assume that's done by somebody else
— You are in the SNS control room
— 'caget' from EPICS base works
— Matlab works (try "matlab -nojvm -nodesktop")
Do this once:

cd $EPI CS_EXTENSI ONS/ src/ nta
source setup. natl ab

— ... and from now on, Matlab should include MCA support

MCA Notes

Basically, it's a chain of
— pv = mcaopen('some_pv_name');
— value = mcaget(pv);
— mcaput(pv, new_value);
— mcaclose(pv);
* Your pv is 'connected' from ..open to ..close

— When getting more than one sample, staying connected is much more efficient than
repeated calls to 'caget'.

Try 'mca<tab>' command-line completion to get a list of all the mca... commands
Run 'help mcaopen' etc. to get help

Matlab/MCA Examples

10 T T T T T T T T T
5 i
0+
N i
-10 | | | | | | |
0 10 20 30 410 50 £l 70 80 a0 100
x @ Cummannd Window

=

7> fred pv = mcaopen(fred’);
*» jane pv = mcaopen(’ jane');
=> fred value = mocaget(fred_pwv)
>» jane value = mcaget|jane pv)
=> fred value + jane wvalue

*
r
*
r

ans =
0.3476

> alan pv = mcaopen(' alan’');

> alan value = mcaget{alan pv);

=> plot(alan_value);

>» mcaclose(alan pv);

> mcaclose(jane pv);

=> mcaclose(fred pv);

e

>>» help mcaocpen

MCROPEN open a Channel Access connection to an EPICS Process Variable

H = MCROPEHN(PVNAME);
If successful H is a unique nonzero integer handle associated with this PV.
Returned handle is 0 if a connection could not be established

[H1, ... ,Hn] = MCAOPEN(PVNAMEl, ... ,PVHAMER):
Is equivalent to but more efficient than multiple single-argument calls
H1 = MCRAOFEN(PVHRMEL);

Hn = MCAOPEN({PVNAMEN);

A

Argonne

NATIONAL LABORATORY

MCA Value Subscription

eoe MATLAB
File Edit Debug Desktop Window Help

D | 4 B o o | Bl B 2| /usersikyo B RS
Shortcuts [#] How to Add [#] What's New
x 2 B Figures - Figure 1
x» NSES| h|RaS|E 08|=O BmBE a0
-0.4 T T T T T
-0.6 - 4
0.8+ 4
-1+ 4
1.2+ 4
-4+ 4
1.6+ 4
18- 4
.2 1 | 1 1 1
0 20 40 G0 g0 100 120
X Command Window
> wals=[]; r
>» pveEmcaopen(fred');
>» mcamon(pv, 'vals=[vals mcacache(pv)]; plot{vals); ');

e
e
e
e

mcamontimer{ ' start')

price of_ StripTool = 0;

price of Matlab without_any toolboxes = 1300;
|

—

o
-
rFs
v

A

Argonne

NATIONAL LABORATORY

Java

* There is actually a JNI and a pure Java binding.
— Only difference in initialization, then same API.

— Usage very much like C interface, "real programming" as opposed to Matlab,
but in a more forgiving Java VM.

* See Docs/Java CA example.

Acknowledgements

Channel Access on every level in detail:
— Jeff Hill (LANL)
makeBaseApp.pl
— Ralph Lange (BESSY) and others
MCA

— Andrei Terebilo (SLAC) is the original author,

— Carl Lionberger maintained it for a while (then SNS)
Java CA

— Eric Boucher is the original author (then APS),

— Matej Sekoranja maintains it;
he added the pure java version (Cosylab)

