
ASYN Device Support
Framework

W. Eric Norum

2006-11-20

ASYN

• What is it?
• What does it do?
• How does it do it?
• How do I use it?

What is it?

Asynchronous Driver Support is a
general purpose facility for
interfacing device specific code to
low level communication drivers

The problem – Duplication of effort

• Each device support has its own asynchronous I/O Dispatcher

– All with different degrees of support for message concurrency and
connection management

The problem – Duplication of effort

• Each device support has its own set of low-level drivers

– All with different driver coverage

The problem – Duplication of effort

• Not possible to get all users to switch to one devXXX

– Many 10s of thousands of record instances
– 100s of device support modules

The problem – Duplication of effort

• R3.14 makes the situation a whole lot worse:

– Adds another dimension to the table – multiple architectures
– vxWorks, POSIX (Linux, Solaris, OS X), Windows, RTEMS

The solution – ASYN

asyn Architecture

Device support (or SNL code,
another driver, or non-EPICS

software)

device device

Port (named object)

Port driver

addr=0 addr=1

Interfaces (named;
pure virtual functions)

asynCommon
(connect, report, …)

asynOctet (write,
read, setInputEos,…)

Control flow – asynchronous driver

Control flow – synchronous driver

ASYN Components – asynManager

• Provides thread for each communication interface

– All driver code executes in the context of this thread
• Provides connection management

– Driver code reports connect/disconnect events
• Queues requests for work

– Nonblocking – can be called by scan tasks
– User-supplied callback code run in worker-thread context makes calls to

driver
– Driver code executes in a single-threaded synchronous environment

• Handles registration

– Low level drivers register themselves

– Can ‘interpose’ processing layers

ASYN Components – asynCommon

• A group of methods provided by all drivers:

– Report
– Connect
– Disconnect

– Set option

– Get option
• Options are defined by low-level drivers
• e.g., serial port rate, parity, stop bits, handshaking

ASYN Components – asynOctet

• Driver or interposed processing layer
• Methods provided in addition to those of asynCommon:

– Read
– Write

– Set end-of-string character(s)

– Get end-of-string character(s)
• All that’s needed for serial ports, ‘telnet-style’ TCP/IP devices
• The single-threaded synchronous environment makes driver development

much easier
– No fussing with mutexes

– No need to set up I/O worker threads

ASYN Components – asynGpib

• Methods provided in addition to those of asynOctet:

– Send addressed command string to device
– Send universal command string
– Pulse IFC line

– Set state of REN line

– Report state of SRQ line
– Begin/end serial poll operation

• Interface includes asynCommon and asynOctet methods
– Device support that uses read/write requests can use asynOctet drivers.

 Single device support source works with serial and GPIB!

ASYN Components – asynRecord

• Diagnostics

– Set device support and driver diagnostic message masks
– No more ad-hoc ‘debug’ variables!

• General-purpose I/O

– Replaces synApps serial record and GPIB record
• Provides much of the old ‘GI’ functionality

– Type in command, view reply
– Works with all asyn drivers

• A single record instance provides access to all devices in IOC

asynRecord

• EPICS record that provides access to
most features of asyn, including standard
I/O interfaces

• Applications:
— Control tracing (debugging)
— Connection management
— Perform interactive I/O

• Very useful for testing, debugging, and
actual I/O in many cases

• Replaces the old generic “serial” and
“gpib” records, but much more powerful

asynRecord – asynOctet devices

Interactive I/O to serial device

Configure serial port parameters

Perform GPIB specific operations

asynRecord – register devices

Same asynRecord, change to ADC port Read ADC at 10Hz with asynInt32 interface

asynRecord – register devices

Same asynRecord, change to DAC port Write DAC with asynFloat64 interface

Tracing and Debugging

• Standard mechanism for printing diagnostic messages
in device support and drivers

• Messages written using EPICS logging facility, can be
sent to stdout, stderr, or to a file

• Device support and drivers call:
– asynPrint(pasynUser, reason, format, ...)
– asynPrintIO(pasynUser, reason, buffer, len,

format, ...)
– Reason:

• ASYN_TRACE_ERROR
• ASYN_TRACEIO_DEVICE
• ASYN_TRACEIO_FILTER
• ASYN_TRACEIO_DRIVER
• ASYN_TRACE_FLOW

• Tracing is enabled/disabled for (port/addr)
• Trace messages can be turned on/off from iocsh,

vxWorks shell, and from CA clients such as MEDM via
asynRecord

• asynOctet I/O from shell

Great – So how do I use it?

1. Adding existing device support to an application

2. Writing support for a message-based (asynchronous) device
• devGpib
• StreamDevice
• Custom

3. Writing support for a register-based (synchronous) device

4. Dealing with interrupts
• ‘Completion’ interrupts
• ‘Trigger’ (unsolicited) interrupts

Adding ASYN instrument support to an application

Adding ASYN instrument support to an application

• This is easy because the instrument support developers always follow all
the guidelines – right?

• The following procedure is taken from:
How to create EPICS device support for a simple serial or GPIB device

Make some changes to configure/RELEASE

• Edit the configure/RELEASE file created by makeBaseApp.pl
• Confirm that the EPICS_BASE path is correct
• Add entries for ASYN and desired instruments
• For example:

• AB300 =/home/EPICS/modules/instrument/ab300/1­1
• ASYN =/home/EPICS/modules/soft/asyn/3­2
• EPICS_BASE=/home/EPICS/base

Modify the application database definition file

• If you are building your application database definition from the application
Makefile, you specify the additional database definitions there:
.
.
xxx_DBD += base.dbd
xxx_DBD += devAB300.dbd
xxx_DBD += drvAsynIPPort.dbd
xxx_DBD += drvAsynSerialPort.dbd
.
.

Add support libraries to the application

• You must link the instrument support library and the ASYN library with the
application

• Add the lines
xxx_LIBS += devAB300
xxx_LIBS += asyn

before the
xxx_LIBS += $(EPICS_BASE_IOC_LIBS)

line in the application Makefile

Modify the application startup script

dbLoadRecords(“db/devAB300.db”,”P=AB300:,R=,L=0,A=0”)

• P,R - PV name prefixes – PV names are (P)(R)name
• L - Link number from corresponding devxxxxConfigure command

 drvAsynIPPortConfigure("L0","192.168.3.137:4001",0,0,0)
• A - Device address

Writing ASYN instrument support

Converting or writing instrument support?

• Strive to make the instrument support useable by others
• Try to support all the capabilities of the instrument
• Keep names and functions as general as possible
• Stick to the prescribed source/library layout

Recommended source file arrangement

• Instrument support is not tied to EPICS base
• Support should not depend upon other instrument support
• Support should not influence other instrument support
• Which means that:

– Instrument support is placed in CVS repository in
• <xxxxx>/modules/instrument/<instrumentname>/

– Each <instrumentname> directory contains
• Makefile
• configure/
• <InstrumentName>Sup/
• documentation/
• License

There’s a script to make this a little easier

• mkdir xxxx/modules/instrument/myinst
• cd xxxx/modules/instrument/myinst
• xxxx/modules/soft/asyn/bin/<arch>/makeSupport.pl -t devGPIB MyInst

Makefile

configure/
CONFIG Makefile RULES RULES_TOP

CONFIG_APP RELEASE RULES_DIRS

MyInstSup/

Makefile devMyInst.c devMyInst.db devMyInst.dbd

documentation/

devMyInst.html
• A few changes to the latter 4 files and you’re done!

Writing devGpib instrument support

Applies to serial and network devices too!

For instruments such as:

• Those connected to local GPIB ports (vxWorks-only)
– IP-488
– NI-1014

• Those connected to remote GPIB ports

– Agilent E5810, E2050
– Tektronix AD007

• Those connected to local serial ports (e.g. COM1:, /dev/ttyS0)
• Those connected to remote serial ports (e.g. MOXA box)
• Serial-over-Ethernet devices (‘telnet-style’)
• VXI-11 Ethernet devices (e.g., Tektronix TDS3000 oscilloscopes)

New support for a message-based instrument (devGPIB)

•

•

/<path>/makeSupport.pl -t devGpib <InstrumentName>
• Confirm configure/RELEASE entries for ASYN and BASE
• Modify InstrumentNameSup/devInstrumentName.c

• Specify appropriate TIMEOUT and TIMEWINDOW values
• Specify tables of command/response strings and record initialization

strings (if needed)
• Write any custom conversion or I/O routines
• Set respond2Writes as appropriate (in init_ai routine)
• Fill in the command table

New support for a message-based instrument (devGPIB)

●/* Param 0 - Identification string */

{&DSET_SI,GPIBREAD,IB_Q_LOW,"*IDN?","%39[^\n]",0,80,0,0,NULL,NULL,NULL},
●/* Param 1 -- Set frequency */

{&DSET_AO,GPIBWRITE,IB_Q_LOW,NULL,"FRQ %.4f HZ",0,80,NULL,0,0,NULL,NULL,NULL}
●/* Param 2 Display Message: BO */

{&DSET_BO,GPIBEFASTO,IB_Q_HIGH,NULL,NULL,0,0,NULL,0,0,setDisplay,NULL,NULL},
● /* Param 3 Read Voltage: AI */

 {&DSET_AI,GPIBREAD,IB_Q_HIGH,"MEAS:VOLT:DC?","%lf",0,80,NULL,0,0,NULL,NULL,NULL},
.
.

● /* Param 20 -- read amplitude */

{&DSET_AI,GPIBREAD,IB_Q_LOW,"IAMP",NULL,0,60,convertVoltage,0,0,NULL,NULL,NULL},

static char *setDisplay[] = {"DISP:TEXT 'WORKING'","DISPLAY:TEXT:CLEAR”,NULL};

Table Entries

dset, type, priority, command, format, rsplen, msglen, convert, P1, P2, P3, pdevGpibNames, eos

New support for a message-based instrument (devGPIB)
static int
convertVoltage(gpibDpvt *pgpibDpvt, int P1, int P2, char **P3)
{
 aiRecord *pai = (aiRecord *)pgpibDpvt->precord;
 asynUser *pasynUser = pgpibDpvt->pasynUser;
 double v;
 char units[4];

 if (sscanf(pgpibDpvt->msg, P1 == 0 ? "AMP %lf %3s" : "OFS %lf %3s", &v, units) != 2) {
 epicsSnprintf(pasynUser->errorMessage, pasynUser->errorMessageSize, "Scanf failed");
 return -1;
 }
 if (strcmp(units, "V") == 0) {
 } else if (strcmp(units, "MV") == 0) {
 v *= 1e-3;
 } else {
 epicsSnprintf(pasynUser->errorMessage, pasynUser->errorMessageSize, "Bad units");
 return -1;
 }
 pai->val = v;
 return 0;
}

New support for a message-based instrument (devGPIB)

record(stringin, "(P)(R)IDN")
{
 field(DESC, "SCPI identification string")
 field(DTYP, "myInst")
 field(INP, "#L$(L) A$(A) @0")
 field(PINI, "YES")
}

record(ao, "(P)(R)SetFrequency")
{
 field(DESC, "Set instrument frequencyt")
 field(DTYP, "myInst")
 field(OUT, "#L$(L) A$(A) @1")
}

.

.

.

New support for a message-based instrument (streamDevice)

•

•

/<path>/makeSupport.pl -t streamSCPI <InstrumentName>
• Confirm configure/RELEASE entries for ASYN and BASE
• Add configure/RELEASE entry for STREAM
• Modify InstrumentNameSup/devInstrumentName.proto

• Create/modifiy 'protocol descriptions'

New support for a message-based instrument (streamDevice)

getIDN {
 out "*IDN?";
 in "%\$1[^\r\n]";
 ExtraInput = Ignore;
}
cmd {
 out "\$1";
}
setD {
 out "\$1 %d";
}
getD {
 out "\$1?";
 in "%d";
 ExtraInput = Ignore;
}

New support for a message-based instrument (streamDevice)

record(bo, "(P)(R)CLS")
{
 field(DESC, "SCPI Clear status")
 field(DTYP, "stream")
 field(OUT, "@devmyInst.proto cmd(*CLS) $(PORT) $
(A)")
}

record(longin, "(P)(R)GetSTB")
{
 field(DESC, "SCPI get status byte")
 field(DTYP, "stream")
 field(INP, "@devmyInst.proto getD(*STB) $(PORT) $(A)")
}

New support for a message-based instrument (devGPIB)

record(stringin, "(P)(R)IDN")
{
 field(DESC, "SCPI identification string")
 field(DTYP, "stream")
 field(INP, "@devmyInst.proto getIDN(39) $(PORT) $(A)")
 field(PINI, "YES")
}
record(waveform, "(P)(R)IDNwf")
{
 field(DESC, "SCPI identification string")
 field(DTYP, "stream")
 field(INP, "@devmyInst.proto getIDN(199) $(PORT) $(A)")
 field(PINI, "YES")
 field(FTYP, "CHAR")
 field(NELM, "200")
}

asynManager – Methods for drivers

• registerPort
– Flags for multidevice (addr), canBlock, isAutoConnect
– Creates thread for each asynchronous port (canBlock=1)

• registerInterface
– asynCommon, asynOctet, asynInt32, etc.

• registerInterruptSource, interruptStart, interruptEnd
• interposeInterface
• Example code:

 pPvt->int32Array.interfaceType = asynInt32ArrayType;

 pPvt->int32Array.pinterface = (void *)&drvIp330Int32Array;

 pPvt->int32Array.drvPvt = pPvt;

status = pasynManager->registerPort(portName,

 ASYN_MULTIDEVICE, /*is multiDevice*/

 1, /* autoconnect */

 0, /* medium priority */

 0); /* default stack size */

status = pasynManager->registerInterface(portName,&pPvt->common);

status = pasynInt32Base->initialize(pPvt->portName,&pPvt->int32);

pasynManager->registerInterruptSource(portName, &pPvt->int32,

 &pPvt->int32InterruptPvt);

asynManager – asynUser

• asynUser data structure. This is the fundamental “handle” used by asyn.
asynUser = pasynManager->createAsynUser(userCallback process,userCallback timeout);
asynUser = pasynManager->duplicateAsynUser)(pasynUser, userCallback queue,userCallback

timeout);
typedef struct asynUser {
 char *errorMessage;
 int errorMessageSize;
 /* The following must be set by the user */
 double timeout; /*Timeout for I/O operations*/
 void *userPvt;
 void *userData;
 /*The following is for user to/from driver communication*/
 void *drvUser;
 /*The following is normally set by driver*/
 int reason;
 /* The following are for additional information from method calls */
 int auxStatus; /*For auxillary status*/
}asynUser;

Standard Interfaces

Common interface, all drivers must implement
• asynCommon: report(), connect(), disconnect()

I/O Interfaces, most drivers implement one or more
• All have write(), read(), registerInteruptUser() and cancelInterruptUser() methods
• asynOctet: writeRaw(), readRaw(), flush(), setInputEos(), setOutputEos(),

getInputEos(), getOutputEos()
• asynInt32: getBounds()
• asynInt32Array:
• asynUInt32Digital:
• asynFloat64:
• asynFloat64Array:

Miscellaneous interfaces
• asynOption: setOption() getOption()
• asynGpib: addressCommand(), universalCommand(), ifc(), ren(), etc.
• asynDrvUser: create(), free()

ASYN API

• Hey, what with terms like ‘methods’ and ‘instances’ this looks
very object-oriented – howcome the API is specified in C?

• "I made up the term 'object-oriented', and I can tell you I didn't have C++ in
mind" – Alan Kay (The inventor of Smalltalk and of many other interesting
things), OOPSLA '97

Generic Device Support

• asyn includes generic device support for many standard EPICS records and
standard asyn interfaces

• Eliminates need to write device support in many cases. New hardware can
be supported by writing just a driver.

• Record fields:
– field(DTYP, “asynInt32”)
– field(INP, “@asyn(portName, addr, timeout) drvParams)

• Examples:
– asynInt32

• ao, ai, mbbo, mbbi, longout, longin
– asynInt32Average

• ai
– asynUInt32Digital, asynUInt32DigitalInterrupt

• bo, bi, mbbo, mbbi
– asynFloat64

• ai, ao
– asynOctet

• stringin, stringout, waveform

Dealing with interrupts

‘Solicited’ interrupts

• e.g., command/response completion
• e.g., txEmpty/rxFull
• Easy to deal with – driver works in blocking, single-threaded environment
• Use devConnectInterruptVME to associate handler with hardware interrupt
• Call epicsEventSignal from low-level interrupt handler
• Driver write method might look like:

 for(i = 0 ; i < numchars ; i++) {

send next character to device

epicsEventWaitWithTimeout(………);

}

‘Unsolicited’ interrupts
• Not quite as easy
• e.g., a trigger which will cause records with SCAN(“I/O Intr”) to process
• Driver initialization creates an task which waits for signal from low-level

interrupt handler (ASYN routines must not be called from low-level
handler)

• Configuration must invoke ASYN manager registerInterruptSource
• Allows subsequent use of interruptStart/End

• The standard interfaces asynInt32, asynInt32Array, asynUInt32Digital,
asynFloat64 and asynFloat64Array all support callback methods for
interrupts

• Callbacks can be used by device support, other drivers, etc.

static void intFunc(void *drvPvt)
{
...
for (i = pPvt->firstChan; i <= pPvt->lastChan; i++) {
 data[i] = (pPvt->regs->mailBox[i + pPvt->mailBoxOffset]);
 }
 /* Wake up task which calls callback routines */
 if (epicsMessageQueueTrySend(pPvt->intMsgQId, data, sizeof(data)) == 0)
...
}
static void intTask(drvIp330Pvt *pPvt)
{
while(1) {
 /* Wait for event from interrupt routine */
 epicsMessageQueueReceive(pPvt->intMsgQId, data, sizeof(data));
 /* Pass int32 interrupts */
 pasynManager->interruptStart(pPvt->int32InterruptPvt, &pclientList);
 pnode = (interruptNode *)ellFirst(pclientList);
 while (pnode) {
 asynInt32Interrupt *pint32Interrupt = pnode->drvPvt;
 addr = pint32Interrupt->addr;
 reason = pint32Interrupt->pasynUser->reason;
 if (reason == ip330Data) {
 pint32Interrupt->callback(pint32Interrupt->userPvt,
 pint32Interrupt->pasynUser,
 pPvt->correctedData[addr]);
 }
 pnode = (interruptNode *)ellNext(&pnode->node);
 }
 pasynManager->interruptEnd(pPvt->int32InterruptPvt);
...
}

Support for Interrupts – Ip330 driver

Lab Session – Control a ‘network-attached device’

• TCP socket at IP address 192.168.0.250, port 24742
• Supports 5 commands:

– *IDN?
• Returns device identification string (up to 200 characters long)

– LOADAV?
• Returns three floating-point numbers (1, 5, 15 minute load

average)
– CLIENT?

• Returns information about client

– VOLTAGE?
• Returns most recent voltage setting

– VOLTAGE n.nnnn
• Sets voltage

	ASYN Device Support Framework
	ASYN
	What is it?
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	The solution – ASYN
	asyn Architecture
	Control flow – asynchronous driver
	Control flow – synchronous driver
	ASYN Components – asynManager
	ASYN Components – asynCommon
	ASYN Components – asynOctet
	ASYN Components – asynGpib
	ASYN Components – asynRecord
	asynRecord
	asynRecord – asynOctet devices
	asynRecord – register devices
	Slide 20
	Tracing and Debugging
	Great – So how do I use it?
	Adding ASYN instrument support to an application
	Slide 24
	Make some changes to configure/RELEASE
	Slide 26
	Add support libraries to the application
	Modify the application startup script
	Writing ASYN instrument support
	Converting or writing instrument support?
	Recommended source file arrangement
	There’s a script to make this a little easier
	Writing devGpib instrument support Applies to serial and network devices too!
	For instruments such as:
	New support for a message-based instrument (devGPIB)
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	asynManager – Methods for drivers
	asynManager – asynUser
	Standard Interfaces
	ASYN API
	Generic Device Support
	Dealing with interrupts
	‘Solicited’ interrupts
	‘Unsolicited’ interrupts
	Support for Interrupts – Ip330 driver
	Lab session – Control ‘network-attached device’

