ASYN Device Support
Argonne Framework

NATIONAL
LABORATORY

... for a brighter future

W. Eric Norum
2006-11-20

Argonne

ASYN

* What is it?

* What does it do?
* How does it do it?
* How do | use it?

What is it?

Asynchronous Driver Support is a
general purpose facility for
interfacing device specific code to
low level communication drivers

devAscii

The problem — Duplication of effort

ibCore OrnlSerial Streams MPF
op drvAscii
Device Device Device Device Device
Suppaort Support Support Support Support
Dispatcher Dispatcher Dispatcher Dispatcher Dispatcher
Drivers Drivers Drivers Drivers Drivers

* Each device support has its own asynchronous I/O Dispatcher

— All with different degrees of support for message concurrency and
connection management

A

Argonne

TORY

The problem — Duplication of effort

Argonne

devAscii

-

-

ibCore OrnlSerial Streams MPF
op drvAscii
Device Device Device Device Device
Suppaort Support Support Support Support
Dispatcher Dispatcher Dispatcher Dispatcher Dispatcher
Drivers Drivers Drivers Drivers Drivers

Each device support has its own set of low-level drivers
— All with different driver coverage

A

TORY

The problem — Duplication of effort

Argonne

Not possible to get all users to switch to one devXXX

-

-

devAscii
ibCore OrnlSerial Streams MPF
ap drvAscii
Device Device Device Device Device
Suppaort Support Support Support Support
Dispatcher Dispatcher Dispatcher Dispatcher Dispatcher
Drivers Drivers Drivers Drivers Drivers

— Many 10s of thousands of record instances
— 100s of device support modules

A

TORY

devAscii

The problem — Duplication of effort

ibCore OrnlSerial Streams MPF
op drvAscii
Device Device Device Device Device
Support Support Support Support Support
Dispatcher Dispatcher Dispatcher Dispatcher Dispatcher
Drivers

=)=

=)=

R3.14 makes the situation a whole lot worse:

— Adds another dimension to the table — multiple architectures
— vxWorks, POSIX (Linux, Solaris, OS X), Windows, RTEMS

The solution — ASYN

gpibCore devAscii OrnlSerial Streams MPF
Device Device Device Device Device
Support Support Support Support Support
ASYN

'

[Drivers

asyn Architecture

Device support (or SNL code,
another driver, or non-EPICS

software)
asynCommon Inter.faces (nampd; ' asynOctet (write,
(connect, report, ...)y pure virtual functions)y yead setlnputEos,...)
Port (named object)
Port driver
addr=0 addr=1

device device

Control flow — asynchronous driver

Code running in
application thread

Code running in
port thread

—

I
i
Record Support

= =
,K : 7/)s

Record Device Support "
= M
2

! 5/

ASYN
3 4

\D/\Wurk Queue P

Low-level Driver ;

&)

Control flow — synchronous driver

All code runs in
application thread

Record Support

Record Device Support

3//

ASYN
4

Low-level Driver %

ASYN Components — asynManager

Provides thread for each communication interface

— All driver code executes in the context of this thread
Provides connection management

— Driver code reports connect/disconnect events
Queues requests for work

— Nonblocking — can be called by scan tasks

— User-supplied callback code run in worker-thread context makes calls to
driver

— Driver code executes in a single-threaded synchronous environment
Handles registration

— Low level drivers register themselves

— Can ‘interpose’ processing layers

ASYN Components — asynCommon

* A group of methods provided by all drivers:
— Report
— Connect
— Disconnect
— Set option
— Get option
* Options are defined by low-level drivers
° e.q., serial port rate, parity, stop bits, handshaking

ASYN Components — asynOctet

* Driver or interposed processing layer
* Methods provided in addition to those of asynCommon:
— Read
— Write
— Set end-of-string character(s)
— Get end-of-string character(s)
* All that’s needed for serial ports, ‘telnet-style’ TCP/IP devices

* The single-threaded synchronous environment makes driver development
much easier

— No fussing with mutexes
— No need to set up I/O worker threads

ASYN Components — asynGpib

* Methods provided in addition to those of asynOctet:
— Send addressed command string to device
— Send universal command string
— Pulse IFC line
— Set state of REN line
— Report state of SRQ line
— Begin/end serial poll operation
* Interface includes asynCommon and asynOctet methods

— Device support that uses read/write requests can use asynOctet drivers.
Single device support source works with serial and GPIB!

ASYN Components — asynRecord

* Diagnostics
— Set device support and driver diagnostic message masks
— No more ad-hoc ‘debug’ variables!
* General-purpose /O
— Replaces synApps serial record and GPIB record
* Provides much of the old ‘GI’ functionality
— Type in command, view reply
— Works with all asyn drivers
* A single record instance provides access to all devices in |[OC

asynRecord

* EPICS record that provides access to
most features of asyn, including standard
l/O interfaces

>< asynRecord. adl

13LAB:serial?

_ _ Port: |[zerial? Address: o

* Applications: cormect | Connected

L . . drvInfo:| Reason: [0

Control tracing (debugging) Interfacel]| mpomn ol
— Connection management Cancel gueusReguest | More... m@ |
— Perform interactive /O [Error: |
.] Connected Fnabled autoConnect
* Very useful for testing, debugging, and =7 =% sutoConnect |
aCtual I/O In many cases traceMask tracelOMask

* Replaces the old generic “serial” and fox 00

s offf On traceError [OFF On | tracel0A8SCTT
gpib” records, but much more powerful || on| tracelobevice [off on | tracelOBscape
[0Ff On|tracellFilter [0ff On|tracelOHex
[0ff On|tracellDriver [zo Truncate size
[0Ff On | traceF low

Trace file: [Unknown

A | |
Argonne ™ |

asynRecord — asynOctet devices

Configure serial port parameters

>¢ asynSerialPort _|o] x|

153LAE:ser1al7

Interactive I/O to serial device asynOption: Supported

< asynOctet.adl Baud rate: 38400 -':

. Data bits: 3 -

13LAB:serial SE¥RCEih. I .

e 2T Stop bits: 1 4

Timeout (St.EC) 2 [1.0000 Transfer: Nr‘ite/R.ead " Uit vormal © Paritu: — .||
asynOctet interface: Supported fictive

Flow control: Hane =

Uutput Format: mscu -l| Terminator: [ir
HSCII - [‘tptptp
Length: Requested: [0 Actual: 6

Input Format: _sscit | Terminator: [ir
ASCIT :[1TP30, 001, 2TP{. 000, STP-0, 001, 4TP0, 000 |

Length: Requested: [0 Actual : 37
EOM reason: Eos

|1/0 Status:NO ALARM I/0 Severity:NO ALARM |
Scan: Passive | Procesz | More... m |

Perform GPIB specific operations

A

Argonne

NATIONAL LABORATORY

asynRecord — register devices

Same asynRecord, change to ADC port Read ADC at 10Hz with asynInt32 interface

’< asynRegister.adl

>< asynRecord.adl

A

Argonne

NATIONAL LABORATORY

153LAB:serial 7 13LAB:serial’
Port : [[p330_1 Address: [0 Timeout (sec): [1.0000 Transfer: Read =
O | Connected Interface: Int32 UInt32Digital Float64
drvInfo:data Reason: o asynint3z 4| Supported Unsupported Supported
Interface: sSdnfotet =1 fictive Inactive Inactive
Cancel gueusRenuest | More... & | Uutput: I.O ID I-C'
Error: OQutput (hex): [0 [0
Connected Enabled autoConnect Input: 32769 0 0
Conhect = | Enhable = | autoConnect I Input Chex): 0x8001 0x0
traceMask tracelOMask Hask thex): AR
[0se1 [0 |I.ﬂ'ﬂ Status:NO_ALARM I/0 Severity:NO_ALARM |
offl On traceError [OFf On | tracel0&SCTT Scan: . sscond | Process | More... m |
[0ff on | tracel0Device [0Ff 0On | tracel0Escape
[0Ff On | tracelOFilter [0Ff On|tracel(lHex
[0ff On | tracelllriver [z0 Truncate size
|OFf on | traceF low
Trace file: [Unknown

asynRecord — register devices

Same asynRecord, change to DAC port Write DAC with asynFloat64 interface
>< asynRecord.adl | ’< asynRegister.adl
13LAB:serial 7 13LAB:serial7
Port : |DAC1 Address: [0 Timeout (sec):[1,0000 Transfer: riterRead
EEE Connected Interface: Int32 UInt32Digital Float64
drvInfo:[data Reason: o asurFlostes | Supported Unsupported Supported
Interface: ssufioates | Inactive Inactive Active
Cancel gueusRaduest | More... o | Uutput: I.O [0 [500
Error: | OQutput (hex): [0x0 ()
Connected Enabled autoConnect Input: 2048 0 >00
Connect = I Enakle = I autoCornect = I Input (hEX) - OXBOO ﬂXﬂ
traceMask tracelOMask Hask Chex): —
TT— (T — [1/0 Status:NO_ALARM T/0 Severity:NO_ALARM |
offf On traceError [OFf On | tracel085CTT Scan: Passive | Process | More... @ |
[0Ff 0n | tracellDevice [0Ff On| tracellEscape

[0Ff On | tracel0OFilter [0ff On | tracelOHex
[0ff On|tracellDriver [go Truncate size
[0FF 0n | traceF low

Trace file: |Unknoun

A

Argonne

NATIONAL LABORATORY

Tracing and Debugging

¢ Standard mechanism for printing diagnostic messages

in device support and drivers % asynRecord.adl =0 x|

* Messages written using EPICS logging facility, can be

sent to stdout, stderr, or to a file 13LAB:seriall
* Device support and drivers call: Port: [Feriall Address: [0
— asynPrint(pasynUser, reason, format, ...) drvInfo:]
— asynPrintlO(pasynUser, reason, buffer, len, Interface: sundtst |
_ ::.-\?Q:Saot,n) Cancel gueueReduest | Hore. .. Ll
* ASYN TRACE ERROR Error:
* ASYN_TRACEIO_DEVICE Connected Enabled autoConnect
* ASYN _TRACEIO FILTER Connect " Enable 4 autaConnect i |
* ASYN _TRACEIO DRIVER
« ASYN_TRACE_FLOW tracetask traceI0Mask
* Tracing is enabled/disabled for (port/addr) o 00

* Trace messages can be turned on/off from iocsh, i [0 Erace%?r. JoFF | EH‘ZE%ESGH
vxWorks shell, and from CA clients such as MEDM via [0f n | tracel0Device [OFf in | tracelOEscape

asynRecord [0fFf On|tracel0Filter [0ff On|tracelOHex
« asynOctet I/O from shell [0ff On | traceI0Driver g0 Truncate size
|0Ff On | traceFlow

Trace file: |Unknoun

A . .
ArgQTrO]N':] EO RATORY

Great — So how do | use it?

1. Adding existing device support to an application
2. Writing support for a message-based (asynchronous) device

* devGpib
* StreamDevice
* Custom

3. Writing support for a register-based (synchronous) device
4. Dealing with interrupts

* ‘Completion’ interrupts

* “Trigger’ (unsolicited) interrupts

Adding ASYN instrument support to an application

Adding ASYN instrument support to an application

* This is easy because the instrument support developers always follow all
the guidelines — right?
* The following procedure is taken from:
How to create EPICS device support for a simple serial or GPIB device

Make some changes to configure/RELEASE

* Edit the configure/RELEASE file created by makeBaseApp.pl
* Confirm that the EPICS_BASE path is correct
* Add entries for ASYN and desired instruments

* For example:
* AB300 =/home/EPICS/modules/instrument/ab300/1-1

° ASYN =/home/EPICS/modules/soft/asyn/3-2
° EPICS BASE=/home/EPICS/base

Modify the application database definition file

* If you are building your application database definition from the application
Makefile, you specify the additional database definitions there:

xxx_DBD += base.dbd

xxx_DBD += devAB300.dbd
xxx_DBD += drvAsynIPPort.dbd
xxx_DBD += drvAsynSerialPort.dbd

Add support libraries to the application

* You must link the instrument support library and the ASYN library with the
application

* Add the lines
xxx_LIBS += devAB300
xxx_LIBS += asyn
before the
xxx_LIBS += $(EPICS_BASE_IOC _LIBS)
line in the application Makefile

Modify the application startup script

dbLoadRecords(“db/devAB300.db”,"P=AB300:,R=,L=0,A=0")

* P,R -PV name prefixes — PV names are (P)(R)name

° L - Link number from corresponding devxxxxConfigure command
drvAsynlPPortConfigure("L0","192.168.3.137:4001",0,0,0)

c A - Device address

Writing ASYN instrument support

Converting or writing instrument support?

e Strive to make the instrument support useable by others
* Try to support all the capabilities of the instrument

* Keep names and functions as general as possible

* Stick to the prescribed source/library layout

Recommended source file arrangement

* Instrument support is not tied to EPICS base
e Support should not depend upon other instrument support
* Support should not influence other instrument support
* Which means that:
— Instrument support is placed in CVS repository in
* <XXXXX>/modules/instrument /<instrumentname>/
— Each <instrumentname> directory contains
* Makefile
°* configure/
<InstrumentName>Sup/

documentation/

License

There’s a script to make this a little easier

* mkdir xxxx/modules/instrument/myinst

* cd xxxx/imodules/instrument/myinst

* xxxx/modules/soft/asyn/bin/<arch>/makeSupport.pl -t devGPIB Myinst
Makefile

configure/
CONFIG Makefile RULES RULES_TOP
CONFIG_APP RELEASE RULES_DIRS

MyInstSup/
Makefile devMyInst.c devMyInst.db devMyInst.dbd
documentation/
devMyInst.html
* A few changes to the latter 4 files and you’re done!

Writing devGpib instrument support

Applies to serial and network devices too!

For instruments such as:

* Those connected to local GPIB ports (vxWorks-only)
— |P-488
— NI-1014
* Those connected to remote GPIB ports
— Agilent E5810, E2050
— Tektronix ADOQ7
* Those connected to local serial ports (e.g. COM1:, /dev/ttyS0)
* Those connected to remote serial ports (e.g. MOXA box)
* Serial-over-Ethernet devices (‘telnet-style’)
* VXI-11 Ethernet devices (e.g., Tektronix TDS3000 oscilloscopes)

New support for a message-based instrument (devGPIB)

* /<path>/makeSupport.pl -t devGpib <InstrumentName>
* Confirm configure/RELEASE entries for ASYN and BASE
* Moadify InstrumentNameSup/devinstrumentName.c
* Specify appropriate TIMEOUT and TIMEWINDOW values

* Specify tables of command/response strings and record initialization
strings (if needed)

* Write any custom conversion or |/O routines
* Set respond2Writes as appropriate (in init_ai routine)
* Fill in the command table

New support for a message-based instrument (devGPIB)

static char *setDisplay[] = {"DISP:TEXT 'WORKING","DISPLAY:TEXT:CLEAR",NULL},

Table Entries
dset, type, priority, command, format, rsplen, msglen, convert, P1, P2, P3, pdevGpibNames, eos

/* Param O - Identification string */
{&DSET_SI,GPIBREAD,IB_Q_LOW,"IDN?","%39[*"\n]",0,80,0,0,NULL,NULL,NULL},

/ Param 1 -- Set frequency */
{&DSET_AO,GPIBWRITE,IB_Q_LOW,NULL,"FRQ %.4f HZ",0,80,NULL,0,0,NULL,NULL,NULL}

/* Param 2 Display Message: BO */
{&DSET_BO,GPIBEFASTO,IB_Q_ HIGH,NULL,NULL,0,0,NULL,0,0,setDisplay,NULL,NULL},

* /* Param 3 Read Voltage: Al */

{&DSET_AI,GPIBREAD,IB_Q_HIGH,"MEAS:VOLT:DC?","%lIf",0,80,NULL,0,0,NULL,NULL,NULL},

* /* Param 20 -- read amplitude */
{&DSET_AI,GPIBREAD,IB_Q_LOW,"IAMP",NULL,0,60,convertVoltage,0,0,NULL,NULL,NULL},

A

Argonne

TORY

New support for a message-based instrument (devGPIB)

static int
convertVoltage(gpibDpvt *pgpibDpvt, int P1, int P2, char **P3)
{

aiRecord *pai = (aiRecord *)pgpibDpvt->precord;

asynUser *pasynUser = pgpibDpvt->pasynUser;

double v;

char units[4];

if (sscanf(pgpibDpvt->msg, P1 == 0 ? "AMP %If %3s" : "OFS %If %3s", &v, units) != 2) {
epicsSnprintf(pasynUser->errorMessage, pasynUser->errorMessageSize, "Scanf failed");
return -1;

}

if (stremp(units, "V") == 0) {

} else if (strcmp(units, "MV") == 0) {

v *=1e-3;

} else {
epicsSnprintf(pasynUser->errorMessage, pasynUser->errorMessageSize, "Bad units");
return -1;

}

pai->val = v;

return O;

New support for a message-based instrument (devGPIB)

record(stringin, "(P)(R)IDN")

{
field(DESC, "SCPI identification string")
field(DTYP, "mylnst")
field(INP, "#L$(L) A$(A) @0")
field(PINI, "YES")

}

record(ao, "(P)(R)SetFrequency")

{
field(DESC, "Set instrument frequencyt")
field(DTYP, "mylnst")
field(OUT, "#L$(L) A$(A) @1")

Y

New support for a message-based instrument (streamDevice)

* /<path>/makeSupport.pl -t streamSCPI <InstrumentName>
* Confirm configure/RELEASE entries for ASYN and BASE
* Add configure/RELEASE entry for STREAM
* Modify InstrumentNameSup/devinstrumentName.proto
* Create/maodifiy 'protocol descriptions'

New support for a message-based instrument (streamDevice)

getIDN {
out "*IDN?";
in "%\$1["\r\n]";
Extralnput = Ignore;
}
cmd {
out "\$1";
}
setD {
out "\$1 %d";
}
getD {
out "\$17?";
in "%d";
Extralnput = Ignore;

}

New support for a message-based instrument (streamDevice)

record(bo, "(P)(R)CLS")
{
field(DESC, "SCPI Clear status")
field(DTYP, "stream")
field(OUT, "@devmylnst.proto cmd(*CLS) $(PORT) $
(A)")
}

record(longin, "(P)(R)GetSTB")
{
field(DESC, "SCPI get status byte")
field(DTYP, "stream")
field(INP, "@devmyinst.proto getD(*STB) $(PORT) $(A)")

}

New support for a message-based instrument (devGPIB)

record(stringin, "(P)(R)IDN")
{
field
field
field
field

}
record(waveform, "(P)(R)IDNwf")

{
field
field
field
field
field
field

DESC, "SCPI identification string")

DTYP, "stream")

INP, "@devmylnst.proto getIDN(39) $(PORT) $(A)")
PINI, "YES")

N N N

DESC, "SCPI identification string")

DTYP, "stream")

INP, "@devmylnst.proto getiIDN(199) $(PORT) $(A)")
PINI, "YES")

FTYP, "CHAR")

NELM, "200")

P e o Y NN

asynManager — Methods for drivers

* registerPort
— Flags for multidevice (addr), canBlock, isAutoConnect
— Creates thread for each asynchronous port (canBlock=1)
* registerinterface
— asynCommon, asynQOctet, asynInt32, etc.
* registerinterruptSource, interruptStart, interruptEnd
* interposelnterface

* Example code:
pPvt->int32Array.interfaceType = asyniInt32ArrayType;
pPvt->int32Array.pinterface = (void *)&drvip330Int32Array;
pPvt->int32Array.drvPvt = pPvt;
status = pasynManager->registerPort(portName,
ASYN_MULTIDEVICE, /*is multiDevice*/
1, /* autoconnect */
0, /* medium priority */
0); /* default stack size */
status = pasynManager->registerinterface(portName,&pPvt->common);
status = pasynint32Base->initialize(pPvt->portName,&pPvt->int32);
pasynManager->registerinterruptSource(portName, &pPvt->int32,
&pPvt->int32InterruptPvt);

A

Argonne

NATIONAL LABORATORY

asynManager — asynUser

* asynUser data structure. This is the fundamental “handle” used by asyn.

asynUser = pasynManager->createAsynUser (userCallback process,userCallback timeout);

asynUser = pasynManager->duplicateAsynUser) (pasynUser, userCallback queue,userCallback
timeout) ;

typedef struct asynUser
char *errorMessage;
int errorMessageSize;
/* The following must be set by the user */

double timeout; /*Timeout for I/0O operations*/

void *userPvt;

void *userData;

/*The following is for user to/from driver communication*/

void *drvUser;

/*The following is normally set by driver*/

int reason;

/* The following are for additional information from method calls */
int auxStatus; /*For auxillary status*/

}asynUser;

A

Argonne

NATIONAL LABORATORY

Standard Interfaces

Common interface, all drivers must implement
* asynCommon: report(), connect(), disconnect()

I/O Interfaces, most drivers implement one or more
* All have write(), read(), registerinteruptUser() and cancellnterruptUser() methods

* asynOctet: writeRaw(), readRaw(), flush(), setinputEos(), setOutputEos(),
getinputEos(), getOutputEos()

* asynInt32: getBounds()
* asynint32Array:

* asynUInt32Digital:

* asynFloat64:

* asynFloat64Array:

Miscellaneous interfaces
* asynOption: setOption() getOption()
* asynGpib: addressCommand(), universalCommand(), ifc(), ren(), etc.
e asynDrvUser: create(), free()

ASYN API

* Hey, what with terms like ‘methods’ and ‘instances’ this looks
very object-oriented - howcome the API is specified in C?

* "I made up the term 'object-oriented’, and | can tell you | didn't have C++ in
mind" — Alan Kay (The inventor of Smalltalk and of many other interesting
things), OOPSLA '97

Generic Device Support

* asyn includes generic device support for many standard EPICS records and
standard asyn interfaces

* Eliminates need to write device support in many cases. New hardware can
be supported by writing just a driver.

* Record fields:
— field(DTYP, “asynInt32”)
— field(INP, “@asyn(portName, addr, timeout) drvParams)
* Examples:
— asynint32
° ao, ail, mbbo, mbbi, longout, longin
— asynint32Average
° ai
— asynUInt32Digital, asynUInt32Digitallnterrupt
* bo, bi, mbbo, mbbi
— asynFloatc4
° al, ao
— asynOctet
* stringin, stringout, waveform

Dealing with interrupts

‘Solicited’ interrupts

* e.g., command/response completion
° e.g., xEmpty/rxFull
* Easy to deal with — driver works in blocking, single-threaded environment
* Use devConnectinterruptVME to associate handler with hardware interrupt
* Call epicsEventSignal from low-level interrupt handler
* Driver write method might look like:
for(i=0 ;i <numchars ; i++) {
send next character to device
epicsEventWaitWith Timeout(.........),

}

‘Unsolicited’ interrupts

Not quite as easy
e.g., a trigger which will cause records with SCAN(“I/O Intr”) to process

Driver initialization creates an task which waits for signal from low-level
interrupt handler (ASYN routines must not be called from low-level
handler)

Configuration must invoke ASYN manager registerinterruptSource
* Allows subsequent use of interruptStart/End

The standard interfaces asyniInt32, asynint32Array, asynUInt32Digital,
asynFloat64 and asynFloat64Array all support callback methods for
interrupts

Callbacks can be used by device support, other drivers, etc.

Support for Interrupts — Ip330 driver

static void intFunc (void *drvPvt)

{

for (i = pPvt->firstChan; i <= pPvt->lastChan; i++) {
data[i] = (pPvt->regs->mailBox[i + pPvt->mailBoxOffset]);
}
/* Wake up task which calls callback routines */
if (epicsMessageQueueTrySend (pPvt->intMsgQId, data, sizeof (data)) == 0)
}
static void intTask (drvIp330Pvt *pPvt)
{
while (1) {
/* Wait for event from interrupt routine */
epicsMessageQueueReceive (pPvt->intMsgQId, data, sizeof (data));
/* Pass int32 interrupts */
pasynManager->interruptStart (pPvt->int32InterruptPvt, &pclientList);
pnode = (interruptNode *)ellFirst(pclientList);
while (pnode) {
asynInt32Interrupt *pint32Interrupt = pnode->drvPvt;
addr = pint32Interrupt->addr;
reason = pint32Interrupt->pasynUser->reason;
if (reason == ip330Data) {
pint32Interrupt->callback (pint32Interrupt->userPvt,
pint32Interrupt->pasynUser,
pPvt->correctedDataladdr]) ;

t
pnode = (interruptNode *)ellNext (&pnode->node) ;

}
pasynManager->interruptEnd (pPvt->int32InterruptPvt) ;

A

Argonne

NATIONAL LABORATORY

Lab Session — Control a ‘network-attached device’

* TCP socket at IP address 192.168.0.250, port 24742
* Supports 5 commands:
— *IDN?
* Returns device identification string (up to 200 characters long)
— LOADAV?

* Returns three floating-point numbers (1, 5, 15 minute load
average)

— CLIENT?
* Returns information about client

— VOLTAGE?

* Returns most recent voltage setting
— VOLTAGE n.nnnn

* Sets voltage

	ASYN Device Support Framework
	ASYN
	What is it?
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	The solution – ASYN
	asyn Architecture
	Control flow – asynchronous driver
	Control flow – synchronous driver
	ASYN Components – asynManager
	ASYN Components – asynCommon
	ASYN Components – asynOctet
	ASYN Components – asynGpib
	ASYN Components – asynRecord
	asynRecord
	asynRecord – asynOctet devices
	asynRecord – register devices
	Slide 20
	Tracing and Debugging
	Great – So how do I use it?
	Adding ASYN instrument support to an application
	Slide 24
	Make some changes to configure/RELEASE
	Slide 26
	Add support libraries to the application
	Modify the application startup script
	Writing ASYN instrument support
	Converting or writing instrument support?
	Recommended source file arrangement
	There’s a script to make this a little easier
	Writing devGpib instrument support Applies to serial and network devices too!
	For instruments such as:
	New support for a message-based instrument (devGPIB)
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	asynManager – Methods for drivers
	asynManager – asynUser
	Standard Interfaces
	ASYN API
	Generic Device Support
	Dealing with interrupts
	‘Solicited’ interrupts
	‘Unsolicited’ interrupts
	Support for Interrupts – Ip330 driver
	Lab session – Control ‘network-attached device’

