Introduction to Device Support

Eric Norum

I\&%‘ Introduction to Device Support

Writing Device Support — Scope

* An overview of the concepts associated with writing EPICS Device
Support routines.

* Examples show the “stone knives and bearskins” approach.

* The ASYN package provides a framework which makes writing
device support much easier.

— The concepts presented here still apply.

I\&%‘ Introduction to Device Support

Writing Device Support — Outline

* What s ‘Device Support’?
* The .dbd file entry

* The driver DSET

* Device addresses

* Support routines

* Using interrupts

* Asynchronous input/output
* C(Callbacks

I\&%‘ Introduction to Device Support

What 1s ‘Device Support’?

* Interface between record and hardware
* A set of routines for record support to call
— The record type determines the required set of routines
— These routines have full read/write access to any record field
* Determines synchronous/asynchronous nature of record
* Performs record I/O
— Provides interrupt handling mechanism

I\&%‘ Introduction to Device Support

Why use device support?

* Could instead make a different record type for each hardware interface,
with fields to allow full control over the provided facilities.

* A separate device support level provides several advantages:
— Users need not learn a new record type for each type of device
— Increases modularity
* [/O hardware changes are less disruptive
* Device support is simpler than record support
* Hardware interface code is isolated from record API
* Custom records are available if really needed.
— By which I mean “really, really, really needed!”
— [Existing record types are sufficient for most applications.

I\&%‘ Introduction to Device Support

How does a record find 1ts device support?

Through .dbd ‘device’ statements:

Appilation b fle | static seemuoe Support.c lle
field(DTYE Devs = =
1eld(d:ms.? qu:p long number:;
long (*report)(int level);
long (*initialize)(int pass)
Device Support dhd file _;. __ long (*initRecord(struct ... *prd);
device(al,VME]:'::l c:m],r]:l up

1hid

.—
——
4

T~

| eplcsEXporthddress(dset{myDevse

Introduction to Device Support

The .dbd file entry

* The IOC discovers device support from entries in .dbd files
devi ce(recType, addr Type, dset Nane, " dt ypeNane”)
addr Type is one of

AB 10 BITBUS I0 CAMAC IO GPIB IO
INST IO RF IO VME IO VXI IO

dsetName 1s the name of the C Device Support Entry Table (DSET)
By convention name indicates record and hardware type:
device(ai, GPIB IO devA dg535, "dg535")
devi ce(bi, VME_ IO devBi Xy240, "XYCOM 240")

I&%‘ Introduction to Device Support

SIS

The DSET

* A C structure containing pointers to functions
* Content dependent upon record type

* Each device support layer defines a DSET with pointers to its own
functions

* A DSET structure declaration looks like:

struct dset {
| ong nunber;
|l ong (*report)(int |evel);
long (*initialize)(int pass);
long (*InitRecord)(struct ...*precord);
|l ong (*getlolntlinfo)(..);
... read/write and other routines as required

b
nunber specifies number of pointers (often 5 or 6)

A NULL 1s given when an optional routine 1s not implemented

DSET structures and functions are usually declared st at i

I&%‘ Introduction to Device Support

SIS

The DSET — initialize

long initialize(int pass);
* Imitializes the device support layer
* Optional routine, not always needed
* Used for one-time startup operations:
— Start background tasks
— Create shared tables
* C(alled twice by 1oclnit()

— pass=0 — Before any record initialization
Doesn’t usually access hardware since device address
information is not yet known

— pass=1 — After all record initialization

Can be used as a final startup step. All device address
information is now known

I\&%‘ Introduction to Device Support

The DSET — initRecord

| ong initRecord(struct ...*precord);

* C(Called by ioclnit() once for each record with matching DTYP

* Optional routine, but usually supplied

* Routines often
— Validate the INP or OUTP field
— Verify that addressed hardware 1s present
— Allocate device-specific storage for the record

* Each record contains a voi d *dpvt pointer for this purpose

— Program device registers

— Set record-specific fields needed for conversion to/from
engineering units

I\&%‘ Introduction to Device Support

The DSET — read/write

| ong read(struct ...*precord);
long wite(struct ...*precord);

* C(Called when record 1s processed
* Perform (or initiate) the I/O operation:
— Synchronous input
* Copy value from hardware into pr ecor d- >r val
* Return 0 (to indicate success)
— Synchronous output
* Copy value from precor d- >rval to hardware
* Return 0 (to indicate success)

I&%‘ Introduction to Device Support

SIS

The DSET — initRecord — Device Addresses

* Device support .dbd entry was
devi ce(recType, addr Type, dset, "nanme")
* addrlype specifies the type to use for the address link, e.g.
devi ce(bo, VME | O devBoXy240, " Xycom XY240")
sets pbo- >out :
— pbo->out.type = VME IO

— Device support uses pbo->out . val ue. vnei o which is a

struct vneio {
short card;
short signal;
char *parm
}
* 10OC Application Developer’s Guide describes all types

I\&%‘ Introduction to Device Support

A simple example (vxWorks or RTEMS)

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<recGl . h>
<devSup. h>
<devlLi b. h>

<bi Record. h>
<epi csExport. h>

static long initRecord(struct biRecord *prec){
char *pbyte, dummy;
if ((prec->inp.type '=VME IO |
(prec->inp.value.vneio.signal < 0) || (prec->inp.value.vneio.signal > 7)) {

}

rec@l Recor dError (S_dev_badl npType, (void *)prec, "devBiFirst: Bad |INP");
return -1;

i f (devRegi ster Address("devBi First", atVMEAl16, prec->inp.value.vneio.card, 0x1,

&pbyte) = 0) {
recCbl RecordError (S _dev_badCard, (void *)prec, "devBi First: Bad VME

addr ess");

}

return -1;

i f (devReadProbe(1l, pbyte, &dummy) < 0) {

}

prec- >dpvt
prec- >mask

recCbl RecordError (S _dev_badCard, (void *)prec, "devBiFirst: Nothing there!");
return -1;

pbyte;
1 << prec->inp.val ue.vneio. si gnal

return O;

Introduction to Device Support

A simple example (vxWorks or RTEMS)

static long read(struct bi Record *prec)

{
vol atile char *pbyte = (volatile char *)prec->dpvt;
prec->rval = *pbyte;
return O;

}

static struct {
| ong nunber;
long (*report)(int);
long (*initialize)(int);
long (*initRecord)(struct bi Record *);
long (*getlolntinfo)();
long (*read)(struct bi Record *);
} devBiFirst = {
5, NULL, NULL, initRecord, NULL, read
i
epi csExport Address(dset, devBi First);

m’lg Introduction to Device Support

The DSET — report

| ong report(int |evel);
* (alled by dbi or shell command
* Prints information about current state, hardware status, I/O
statistics, etc.
* Amount of output is controlled by the level argument
— | evel =0 — list hardware connected, one device per line
— | evel >0 — provide different type or more detailed information

I&%‘ Introduction to Device Support

SIS

A simple example — device support .dbd file

The .dbd file for the device support routines shown on the
preceding pages might be

device(bi, VME_IO devBiFirst, “sinplelnput”)

I\&%‘ Introduction to Device Support

A simple example — application .db file

An application .db file using the device support routines shown on the
preceding pages might contain

record(bi, "$(P):statusBit")

{
fiel d(DESC, "Sinple exanple binary input")
field(DTYP, "sinplelnput")
field(INP, "#C$(CO) S$(S)")

}

I\&%‘ Introduction to Device Support

A stmple example — application startup script

An application startup script (st.cmd) using the device support routines
shown on the preceding pages might contain

dbLoadRecor ds("db/ exanpl e. db", " P=t est , C=0x1EOQ, S=0")

which would expand the .db file into

record(bi, "test:statusBit")

{
fiel d(DESC, "Sinple exanple binary input")
field(DTYP, "sinplelnput")
field(l1 NP, "#COx1EO SO")

I\&%‘ Introduction to Device Support

Useful facilities

* ANSI C routines (EPICS headers fill in vendor holes)
- epicsStdio.h — printf, sscanf, epicsSnprintf
— epicsString.h — strcpy, memcpy, epicsStrDup
- epicsStdlib.h — getenv, abs, epicsScanDouble
* OS-independent hardware access (devLib.h)
- Bus address — Local address conversion
— Interrupt control
— Bus probing
* EPICS routines
- epicskEvent.h — process synchronization semaphore
- epicsMutex.h — mutual-exclusion semaphore
- epicsThread.h — multithreading support
— recGbl.h — record error and alarm reporting

I\&%‘ Introduction to Device Support

Device interrupts

* vxWorks/RTEMS interrupt handlers can be written in C
VME interrupts have two parameters

— Interrupt level (1-7, but don’t use level 7 on M68k) — often set with
on-board jumpers or DIP switches

— Interrupt vector (0-255, <64 reserved on MC680x0) — often set by
writing to an on-board register

* OS initialization takes two calls
1. Connect interrupt handler to vector
devConnect | nt er r upt VME(unsi gned vect or Nunber,
voi d (*pFunction)(void *),void *paraneter);
2. Enable interrupt from VME to CPU
devEnabl el nt errupt Level VME (unsi gned | evel);

I&%‘ Introduction to Device Support

SIS

i)

I/O 1nterrupt record processing

* Record is processed when hardware interrupt occurs
Granularity depends on device support and hardware
- Interrupt per-channel vs. interrupt per-card

#i ncl ude <dbScan. h> to get additional declarations

Call scanlolnit once for each interrupt source to initialize a
local value:

scanl ol nit (& oscanpvt);

 DSET must provide a getlointinfo routine to specify the
Interrupt source associated with a record — a single interrupt
source can be associated with more than one record

* Interrupt handler calls scanloRequest with the ‘ioscanpvt’
value for that source — this is one of the very few routines
which may be called from an interrupt handler

Introduction to Device Support

The DSET — getloIntInfo

| ong getlolntInfo(int cnd, struct ...*precord, | OSCANPVT
*ppvt);

* Set *ppvt to the value of the IOSCANPVT variable for the
Interrupt source to be associated with this record

* You may call scanlolnit to initialize the IOSCANPVT variable
if you haven’t done so already

 Return 0 to indicate success or non-zero to indicate failure —
in which case the record SCAN field will be set to Passive

* Routine is called with
— (cnd=0) when record is set to SCAN=I/O Intr
— (cnmd=1) when record SCAN field is set to any other value

I\&%‘ Introduction to Device Support

The DSET — specialLinconv

| ong speci al Li nconv(struct ...*precord, int after);

* Analog input (ai) and output (ao) record DSETs include this
sixth routine

* (Called just before (af t er =0) and just after (af t er =1) the value
of the LINR, EGUL or EGUF fields changes

* “Before” usually does nothing

* “After” recalculates ESLO from EGUL/EGUF and the
hardware range if LINR is LINEAR. Doesn’t change ESLO if

LINR is SLOPE.

* |f LINR field is appropriate ai record processing will compute
val as
val = ((rval + roff) * aslo + aoff) * eslo + eoff

Ao record processing is similar, but in reverse

I\&%‘ Introduction to Device Support

Asynchronous I/0O

* Device support must not wait for slow 1/O

* Hardware read/write operations which take “a long time” to
complete must use asynchronous record processing

- Ty >950us — definitely “a long time”
- T,o<2us — definitely “not a long time”
- 2us<T,,<80pus 7277

* |f device does not provide a completion interrupt a “worker’
thread can be created to perform the 1/O

- this technique is used for message-based (GPIB, USB,
Serial, Ethernet) devices

J

I\&%‘ Introduction to Device Support

Asynchronous I/0O — read/write operation

* Check value of precord- >pact and if zero:
— Set precord->pact to 1
- Start the 1/O operation

* write hardware or send message to worker thread
- Return 0

* When operation completes run the following code from a
thread (i.e. NOT from an interrupt handler)

struct rset *prset = (struct rset *)precord->rset;
dbScanLock(precord);

(*prset->process) (precord);

dbScanUnl ock(precord);

* The record’s process routine will call the device support
read/write routine — with pr ecor d- >pact =1
- Complete the I/0O, set rval, etc.

I\&%‘ Introduction to Device Support

Asynchronous /O — callbacks

* An interrupt handler must not call a record’s process routine
directly
Use the callback system (callback.h) to do this
* Declare a callback variable
CALLBACK nyCal | back;

Issue the following from the interrupt handler

cal | backRequest ProcessCal | back(&ryCal | Back, priorityLow, precord
);

* This queues a request to a callback handler thread which will
perform the lock/process/unlock operations shown on the
previous page

* There are three callback handler threads

- With priorities Low, Medium and High

I\&%‘ Introduction to Device Support

The ASYN Support Module

* This should be your first consideration for new device support

* It provides a powerful, flexible framework for writing device
support for

— Message-based asynchronous devices

* In many cases these can be supported with no C
programming at all (ASYN+StreamDevice)

— Register-based synchronous devices

I\&%‘ Introduction to Device Support

	Writing Device Support
	Writing Device Support – Scope
	Writing Device Support – Outline
	What is ‘Device Support’?
	Why use device support?
	How does a record find its device support?
	The .dbd file entry
	The DSET
	The DSET – initialize
	The DSET – initRecord
	The DSET – read/write
	The DSET – initRecord – Device Addresses
	A simple example (vxWorks or RTEMS)
	Slide 14
	The DSET – report
	A simple example – device support .dbd file
	A simple example – application .db file
	A simple example – application startup script
	Useful facilities
	Device interrupts
	I/O interrupt record processing
	The DSET – getIoIntInfo
	The DSET – specialLinconv
	Asynchronous I/O
	Asynchronous I/O – read/write operation
	Asynchronous I/O – callbacks
	Asynchronous I/O – ASYN

