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Install and Build

Purpose

asynDriver is a general purpose facility for interfacing device specific code to low level drivers. asynDriver
allows non-blocking device support that works with both blocking and non-blocking drivers.

A primary target for asynDriver is EPICS IOC device support but, other than using libCom, much of it is
independent of EPICS.

asynDriver has the following key concepts:

Device support communicates with drivers via interfaces

Drivers take care of the details of how to communicate with a device and implement interfaces for use by
device support. Interfaces are defined for both message and register based devices. In the past when
support was written for a new type of device, device support for standard EPICS records had to be written
in addition to the driver support. Now a driver just implements one or more of the standard interfaces.

• 

A port provides access to device instances

A port, which has a portName, identifies a communication path to one or more device instances. For
example a GPIB port can have up to 15 devices connected to it. An RS232 port communicates with a
single device. Drivers register a port. Device support connects to a port.

• 

asynManager controls access to a port

asynManager, a component of asynDriver, provides exclusive access to a driver via calls to
queueRequest, lockPort/unlockPort, and queueLockPort/queueUnlockPort. Once device support has
access, it can make an arbitrary number of calls to the driver knowing that no other support can call the
driver. Device and driver support do not need to implement queues or semaphores since asynManager
does this for them.

• 

asynTrace provides a general purpose diagnostic facility

Rules are defined for providing diagnostic messages. Provided device and driver support follow the rules,
a user can obtain several levels of diagnostic information that can be displayed on the console, written to
a file, or sent to the EPICS errlog facility.

• 

asynRecord - Generic access to an device/port

asynRecord is an EPICS record and set of associated MEDM displays that provide access to:

A port or a device connected to a port

The port or port,addr can be changed dynamically. Thus with one asynRecord in an IOC, it is
possible to talk to any device that has an asyn compatible driver.

♦ 

asynTrace - All asynTrace options can be controlled with the asynRecord.♦ 
Connection Management

Display and change connection, enable, and autoConnect state

♦ 

Standard interfaces♦ 

• 

asynDriver
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These can be used to communicate with devices. For example if a new instrument arrives that has
a serial, GPIB, or ethernet port, then it is often possible to communicate with it just by attaching
an asynRecord to it.

Extensive Serial Support

asynDriver provides many facilities for communicating with RS232, RS485, GPIB, and ethernet.

• 

Status

This version provides

asynManager: the software layer between device support and drivers.• 
asynRecord: EPICS record support that provides a generic interface to asynManager, asynCommon,
asynOctet, asynGpib, and other interfaces.

• 

asynPortDriver: a C++ base class that makes it easy to write asyn drivers, with much of the boilerplate
asyn code handled in the base class methods.

• 

asynPortClient: C++ classes that makes it easy to write C++ asyn clients that communicate directly with
asyn port drivers without running an EPICS IOC.

• 

standard interfaces: Standard message and register based interfaces are defined. Low Level Drivers
implement standard interfaces. Device support communicates with low level drivers via standard
interfaces.

• 

devEpics: Generic device support for EPICS records.• 
devGpib: EPICS device support that replaces the device support layer of the Winans/Franksen gpibCore
support.

• 

asynGpib: a replacement for the drvGpibCommon layer of the Franksen gpibCore support.• 
drvAsynSerialPort: Support for devices connected to serial ports.• 
drvAsynIPPort: Support for TCP/IP and UDP/IP socket communication, including serial devices accessed
via Ethernet/Serial converter boxes.

• 

drvAsynIPServerPort: Support for asyn socket servers that are accessed from remote clients. TCP/IP
sockets and UDP are supported.

• 

VXI-11: A replacement for the VXI-11 support of the Franksen gpibCore support.• 
Linux-gpib: Support for the Linux GPIB Package library.• 
gsIP488: A low level driver for the Greensprings IP488 Industry Pack module.• 
ni1014: A low level driver for the National Instruments VME 1014D.• 
Serial Bus Support: The asynLockPortNotify interface was added to make it easier to support serial bus
drivers that use the standard serial support.

• 

The following are some of the existing EPICS general purpose device support systems that have been converted
to use asynDriver.

StreamDevice. This is the protocol file-based support for serial/GPIB/CAN from Dirk Zimoch.• 
gpibCore. This is the operating-system-independent version of the Winans/Franksen GPIB support.• 
synApps (The APS BCDA synchrotron applications). The mca, dxp, motor, Ip330, IpUnidig, DAC128V
and quadEM applications in this package have all been converted to asyn. The serial and GPIB modules
in this package are no longer needed, because the asyn record replaces them. The areaDetector module
was written to use asyn, and was the original motivation for the development of asynPortDriver.

• 
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Overview of asynDriver

Definitions

asynDriver is a software layer between device specific code and drivers that communicate with devices. It
supports both blocking and non-blocking communication and can be used with both register and message based
devices. asynDriver uses the following terminology:

interface• 
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All communication between software layers is done via interfaces. An interface definition is a C language
structure consisting entirely of function pointers. An asynDriver interface is analogous to a C++ or Java
pure virtual interface. Although the implementation is in C, the spirit is object oriented. Thus this
document uses the term "method" rather than "function pointer".
port

A physical or logical entity which provides access to a device. A port provides access to one or more
devices.

• 

portDriver

Code that communicates with a port.

• 

portThread

If a portDriver can block, a thread is created for each port, and all I/O to the portDriver is done via this
thread.

• 

device

A device (instrument) connected to a port. For example a GPIB interface can have up to 15 devices
connected to it. Other ports, e.g. RS-232 serial ports, only support a single device. Whenever this
document uses the word device without a qualifier, it means something that is connected to a port.

• 

device support

Code that interacts with a device.

• 

synchronous

Support that does not voluntarily give up control of the CPU.

• 

asynchronous

Support that is not synchronous. Some examples of asynchronous operations are epicsThreadSleep,
epicsEventWait, and stdio operations. Calls to epicsMutexTake are considered to be synchronous
operations, i.e. they are permitted in synchronous support.

• 

asynDriver

The name for the support described in this manual. It is also the name of the header file that describes the
core interfaces.

• 

asynManager

An interface and the code which implements the methods for interfaces asynManager and asynTrace.

• 

asynchronous Driver

A driver that blocks while communicating with a device. Typical examples are serial, gpib, and network
based drivers.

• 

synchronous Driver

A driver that does not block while communicating with a device. Typical examples are VME register
based devices.

• 

Message Based Interfaces

Interfaces that use octet arrays for read/write operations.

• 

Register Based Interfaces• 

asynDriver
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Interfaces that use integers or floats for read/write operations.
interrupt

As implemented by asynManager, interrupt just means "I have a new value for port, address".

• 

Synchronous/asynchronous and message/register are orthogonal concepts. For example a register based driver can
be either synchronous or asynchronous. The terminology register vs message is adapted from VXI.

Standard interfaces are defined so that device specific code can communicate with multiple port drivers. For
example if device support does all its communication via reads and writes consisting of 8 bit bytes (octets), then it
should work with all port drivers that support octet messages. If device support requires more complicated
support, then the types of ports will be more limited. Standard interfaces are also defined for drivers that accept 32
bit integers or 64 bit floats. Additional interfaces can be defined, and it is expected that additional standard
interfaces will be defined.

One or more devices can be attached to a port. For example, only one device can be attached to an RS-232 port,
but up to 15 devices can be attached to a GPIB port.

Multiple layers can exist between device specific code and a port driver. A software layer calls interposeInterface
in order to be placed between device specific code and drivers. For more complicated protocols, additional layers
can be created. For example, GPIB support is implemented as an asynGpib interface which is called by user code,
and an asynGpibPort interface which is called by asynGpib.

A driver normally implements multiple interfaces. For example asynGpib implements asynCommon, asynOctet,
and asynGpib.

asynManager uses the Operating System Independent features of EPICS base. It is, however, independent of
record/device support. Thus, it can be used by other code, e.g. a sequence program.

Standard Interfaces

These are interfaces provided by asynManager or interfaces implemented by all or most port drivers.

The interfaces are:

asynManager provides services for communicating with a device connected to a port.

asynCommon is an interface that must be implemented by all low level drivers. The methods are:

report - Report status of port.• 
connect - Connect to the port or device.• 
disconnect - Disconnect from the port or device.• 

asynTrace is an interface for generating diagnostic messages.

asynLockPortNotify is an interface that is implemented by a driver which is an asynUser of another driver. An
example is a serial bus driver that uses standard serial support. asynManager calls asynLockPortNotify whenever
it locks or unlocks the port.

asynDrvUser is an interface for communicating information from device support to a driver without the device

asynDriver
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support knowing any details about what is passed.

Generic Interfaces

In addition to asynCommon and optionally asynDrvUser, port drivers can implement one or more of the following
message and/or register based interfaces.

asynOctet methods for message based devices

asynFloat64 methods for devices that read/write IEEE float values

asynFloat32Array methods for devices that read/write arrays of IEEE 32-bit float values

asynFloat64Array methods for devices that read/write arrays of IEEE 64-bit float values

asynInt32 methods for devices that read/write integer values. Many analog I/O drivers can use this interface.

asynInt8Array methods for devices that read/write arrays of 8-bit integer values

asynInt16Array methods for devices that read/write arrays of 16-bit integer values

asynInt32Array methods for devices that read/write arrays of 32-bit integer values

asynUInt32Digital methods for devices that read/write arrays of digital values. This interface provides a mask to
address individual bits within registers.

asynGenericPointer methods for devices that read/write arbitrary structures, passed via a void* pointer. The client
and the server of course need to agree on the structure type being pointed to.

asynEnum methods for devices to define enum strings, values, and severities.

asynOption methods for device configuration using key/value pairs.

asynManager

asynManager is an interface and associated code. It is the "heart" of asynDriver since it manages the interactions
between device support code and drivers. It provides the following services:

reporting

Method: report

• 

asynUser creation

Methods: createAsynUser, duplicateAsynUser, freeAsynUser

An asynUser is a "handle" for accessing asynManager services and for calling interfaces implemented by
drivers. An asynUser must only be created via a call to createAsynUser or duplicateAsynUser since
asynManager keeps private information for each asynUser. freeAsynUser puts the asynUser on a free list
rather than calling free. Clients can continually create and free asynUsers quickly and without
fragmenting memory.

• 

asynDriver
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The call to createAsynUser specifies a processCallback and a timeoutCallback. These are the callbacks
that will be called as a result of a queueRequest.

An asynUser should not be shared between parts of code that can simultaneously access a driver. For
example device support for standard EPICS records should create an asynUser for each record instance.
Basic asynUser services

Methods: connectDevice, disconnect, findInterface

These methods should only be called by the code that created the asynUser.

After an asynUser is created the user calls connectDevice. The user is connected to a port driver that can
communicate with a device. findInterface is called for each interface the user requires. disconnect is
called when the user is done with the device.

• 

Queuing services

Methods: queueRequest, cancelRequest, lockPort, unlockPort, queueLockPort, queueUnlockPort,
blockProcessCallback, unblockProcessCallback

queueRequest is a request to call the processCallback specified in the call to createAsynUser. Most
interface methods must only be called from processCallback via a call to queueRequest or between calls
to lockPort/unlockPort.. Exceptions to this rule must be clearly documented (a common exception are
methods registerInterruptUser/cancelInterruptUser).

queueRequest semantics differ for ports that can block and ports that do not block

When registerPort is called by a driver that can block, a thread is created for the port. A set of queues,
based on priority, is created for the thread. queueRequest puts the request on one of the queues. The port
thread takes the requests from the queues and calls the associated callback. Only one callback is active at
a time.

When registerPort is called by a driver that does not block, a mutex is created for the port. queueRequest
takes the mutex, calls the callback, and releases the mutex. The mutex guarantees that two callbacks to a
port are not active at the same time.

lockPort is a request to lock all access to low level drivers until unlockPort is called. If the port blocks
then lockPort and all calls to the port driver may block. lockPort/unlockPort are provided for use by code
that is willing to block or for communication with synchronous ports. A call to lockPort locks all
addresses associated with a multi-address port. Prior to asyn R4-14 pasynManager->lockPort()
immediately took the port mutex when it was available, rather than queueing a request to take the mutex.
From asyn R4-14 to R4-20 lockPort queues a request to access the port and then blocks until the queue
request callback runs in the portThread. When the queue request runs, the thread that called
pasynManager->lockPort() executes, and the portThread blocks, until pasynManager->unlockPort() is
called. In R4-21 the queued lockPort and unlockPort functions were renamed to queueLockPort and
queueUnlockPort, and the original lightweight lockPort and unlockPort functions were restored.

blockProcessCallback is a request to prevent acccess to a device or port by other asynUsers between
queueRequests. blockProcessCallback can be called from a processCallback or when the asynUser has no
request queued. When called from processCallback blocking starts immediately, otherwise blocking starts
the next time processCallback is called. Blocking means that no other asynUser's processCallback will be
called until unblockProcessCallback is called. blockProcessCallback only works with drivers that can

• 

asynDriver
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block and an error is returned if it is called for non-blocking drivers.
Basic Driver services

Methods: registerPort,registerInterface

registerPort is called by a portDriver. registerInterface is called by a portDriver or an interposeInterface.

Each port driver provides a configuration command that is executed for each port instance. The
configuration command performs port specific initializations, calls registerPort, and registerInterface for
each interface it implements.

• 

Attribute Retrieval

Methods: isMultiDevice, canBlock, getAddr, getPortName, isConnected, isEnabled, isAutoConnect

These methods can be called by any code that has access to the asynUser

• 

Connection services

Methods: enable,autoConnect,setAutoConnectTimeout

These methods can be called by any code that has access to the asynUser.

These methods can be called to set the enable and autoConnect settings for a port and/or device. If
autoConnect is true then asynManager does the following:

When the port registers its asynCommon interface, asynManager queues a connection request. It
then waits for a short time for the connection callback to complete. The default time is 0.5
seconds, but this time can be changed with a call to the function
pasynManager->setAutoConnectTimeout(double timeout). This function can be accessed from
the iocsh shell with the asynSetAutoConnectTimeout(double timeout) command. This short
timeout is designed to allow devices time to connect if they are available, but not to excessively
slow down booting of the IOC by waiting, for example, for the system timeout on TCP
connections. Note that this means that it is very likely that the pasynCommon->connect() call will
occur as soon as the asynCommon interface is registered, which means that the driver must have
already done all initialization required for the asynCommon->connect() callback before it
registers the asynCommon interface. If the port does not connect initially, or if it subsequently
disconnects, then asynManager will queue a connection request every 20 seconds. If autoConnect
is true and port/device is enabled but the device is not connected, then queueManager calls calling
asynCommon:connect just before it calls processCallback.

♦ 

• 

Exception services

Methods: exceptionCallbackAdd, exceptionCallbackRemove, exceptionConnect, exceptionDisconnect

Device support code calls exceptionCallbackAdd and exceptionCallbackRemove. The complete list of
exceptions is defined in asynDriver.h as "enum asynException".

Whenever a port driver connects or disconnects, normally as a result of a call to asynCommon:connect or
asynCommon:disconnect, it must also call exceptionConnect or exceptionDisconnect.

• 

Interrupt services

Methods: registerInterruptSource, getInterruptPvt, createInterruptNode, freeInterruptNode,
addInterruptUser, removeInterruptUser, interruptStart, interruptEnd

• 

asynDriver
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Interrupt just means: "I have a new value." Many asyn interfaces, e.g. asynInt32, provide interrupt
support. These interfaces provide methods addInterruptUser and removeInterruptUser. Device support
calls addInterruptUser if it wants to be called whenever an interrupt occurs. Drivers or other code that
implements the interface calls the registered users when it has new data. asynManager provides services
that help drivers implement thread-safe support for interrupts.

A driver that supports interrupts calls registerInterruptSource for each interface that has associated
interrupts. It calls interruptStart to obtain a list of all registered users and interruptEnd after it calls the
registered users. The driver is also responsible for calling addInterruptUser and removeInterruptUser.

If any calls are made to addInterruptUser or removeInterruptUser between the calls to interruptStart and
interruptEnd, asynManager puts the request on a list and processes the request after interruptEnd is called.

Many standard interfaces, e.g. asynInt32, provide methods registerInterruptUser, cancelInterruptUser.
These interfaces also provide an auxilliary interface, e.g. asynInt32Base, and code which implements
registerInterruptUser and cancelInterruptUser.

On operating systems like vxWorks or RTEMS interruptStart,interruptEnd MUST NOT be called from
interupt level.
Timestamp services

Methods: updateTimeStamp, getTimeStamp, setTimeStamp, registerTimeStampSource,
unregisterTimeStampSource.

These methods provide support for setting a timestamp for a port. This timestamp is typically used to set
the pasynUser->timestamp field that is passed to device support on read or callback operations. Device
support uses the pasynUser->timestamp field to set the record TIME field. This will then be the record
timestamp if the record TSE field is -2. asynManager provides a default timestamp source function which
just calls epicsTimeGetCurrent(). However, registerTimeStampSource can be used to supply a different
user-provided timestamp source function, for example one that calls epicsTimeGetEvent(), or some other
site-specific timestamp source. unregisterTimeStampSource reverts to the default timestamp source in
pasynManager.

• 

General purpose freelist service

Methods: memMalloc, memFree

These methods do not require an asynUser. They are provided for code that must continually allocate and
free memory. Since memFree puts the memory on a free list instead of calling free, they are more
efficient that calloc/free and also help prevent memory fragmentation.

• 

Interpose service

Method: interposeInterface

Code that calls interposeInterface implements an interface which is either not supported by a port driver
or that is "interposed" between the caller and the port driver. For example asynInterposeEos interposes
asynOctet. It performs end of string processing for port drivers that do not support it.

interposeInterface is recursive, i.e. an arbitrary number of interpose layers can exist above a single
port,addr.

• 
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Multiple Device vs Single Device Port Drivers

When a low level driver calls registerPort, it declares if it handles multiple devices. This determines how the addr
argument to connectDevice is handled and what getAddr returns.

multiDevice false

The addr argument to connectDevice is ignored and getAddr always returns -1

• 

multiDevice true

If connectDevice is called with addr<0, the connection is to the port and getAddr always returns -1. If
addr>=0, then the caller is connected to the device at the specified address. getAddr will return this
address. An asynUser connected to the port can issue requests that affect all address on the port. For
example disabling access to the port prevents access to all addresses on the port.

• 

Connection Management

asynManager keeps track of the following states:

connection

Is the port or device connected? This state is initialized to disconnected.

• 

enabled

Is the port or device enabled? This state is initialized to enabled.

• 

autoConnect

Does asynManager automatically attempt to connect if it finds the port or device disconnected? This is
initialized to the state specified in the call to registerPort.

• 

If the port does not support multiple devices, then port and device status are the same. If the port does support
multiple devices, then asynManager keeps track of the states for the port and for every device connected to the
port.

Whenever any of the states change for a port or device, then all users that previously called
exceptionCallbackAdd for that port or device are called.

Low level drivers must call pasynManager:exceptionConnect whenever they connect to a port or port,addr and
exceptionDisconnect whenever they disconnect.

Protecting a Thread from Blocking

The methods asynManager:report and asynCommon:report can be called by any thread, but the caller is blocked
until the report finishes. lockPort, unlockPort, queueLockPort, queueUnlockPort, and most port methods may
block. The other asynManager methods can be called by any thread including portThread. None of these methods
block.

Unless stated otherwise the methods for other interfaces must only be called by processCallback or by calls
between lockPort/unlockPort, or queueLockPort/queueUnlockPort.

asynDriver
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Interface methods registerInterruptUser and cancelInterruptUser must never block. The registerInterruptUser
callback must not block because it could be called by a non blocking driver.

portThread

If a driver calls asynManager:registerPort with the ASYN_CANBLOCK attributes bit set, then asynManager
creates a thread for the port. Each portThread has its own set of queues for the calls to queueRequest. Four queues
are maintained. One queue is used only for asynCommon:connect and asynCommon:disconnect requests. The
other queues provide different priorities: low, medium, and high. queueRequests to any queue other then the
connection queue will be rejected if the port is not connected. portThread runs forever implementing the
following algorithm:

Wait for work by calling epicsEventMustWait. Other code such as queueRequest call epicsEventSignal.1. 
If the port is disabled, go back to 1.2. 
For every element in queue, asynQueuePriorityConnect:

Removes the element from the queue.♦ 
Calls the user's callback♦ 

3. 

For each element of the queues asynQueuePriorityHigh, ...,asynQueuePriorityLow.
If disabled, skip this element.♦ 
If not connected and autoConnect is true for the device, then attempt to connect to the device.♦ 
If not connected, skip this element.♦ 
If blocked by another thread, skip this element.♦ 
If not blocked and user has requested blocking, then blocked.♦ 
Remove from queue and:

lock port◊ 
call user callback◊ 
unlock port◊ 

♦ 

4. 

The actual code is more complicated because it unlocks before it calls code outside asynManager. This means that
the queues can be modified and exceptions may occur.

Theory of Operation

Initialization

During initialization, port drivers register each communication port as well as all supported interfaces.

User code creates an asynUser, which is a "handle" for accessing asynDriver facilities, by calling

    pasynManager->createAsynUser(processCallback,timeoutCallback);

An asynUser has the following features:

An asynUser is the means by which asynManager manages multiple requests for accessing a port.• 
processCallback,which is used by queueRequest described below, is the addresss of a user supplied
callback routine.

• 

timeoutCallback is the address of caller supplied callback that will be called if a queueRequest remains on
the queue too long.

• 

Device support code should create an asynUser for each "atomic" access to low level drivers, i.e. a set of
calls that must not be interlaced with other calls to the low level drivers. For example device support for

• 
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EPICS record support should create an asynUser for each record instance.
Device support code should NOT try to share an asynUser between multiple sources of requests for
access to a port. If this is done then device support must itself handle contention issues that are already
handled by asynManager.

• 

User code connects to a low level driver via a call to

    status = pasynManager->connectDevice(pasynUser,portName,addr);

This call must specify the name of the port and the address of the device. It then calls findInterface to locate the
interfaces with which it calls the driver. For example:

     pasynInterface = pasynManager->findInterface(pasynUser,asynOctetType,1);

Requesting access to a port

User code can request access to a port by two methods:

queueRequest -

The processCallback passed to createAsynUser makes calls to the port interfaces.

• 

lockPort/unlockPort, queueLockPort/queueUnlockPort -

The caller can make calls to the port interfaces while the lock is held. These calls and calls to the port
may block and thus should NOT be used by code that should not block, e.g. synchronous device support
for EPICS records.

• 

queueRequest - Flow of Control

User code requests access to a port by calling:

    status = pasynManager->queueRequest(pasynUser,priority,timeout);

This results in either processCallback or timeoutCallback being called. Most requests to a port must be made from
processCallback. queueRequest does not block. If queueRequest is called for a port that can block the request is
queued to a thread dedicated to the port. If queueRequest is called for a port does not block it just calls
processCallback. guarantee is valid only if low level drivers are only accessed by calling queueRequest,
lockPort/unlockPort, and/or queueLockPort/queueUnlockPort

The following examples are based on EPICS IOC record/device support.

The first example shows access to a port that can block.
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Figure 1: Asynchronous Control Flow

The sequence of record device support events that occurs starting with an application thread is pictured above in
Figure 1, and explained below in the following steps:

Record processing calls device support with PACT 0 (Processing is not active).1. 
Device support calls queueRequest.2. 
queueRequest places the request on the driver work queue. The application thread is now able to go on
and perform other operations. Subsequent operations for this I/O request are handled in the port driver
thread.

3. 

The portThread removes the I/O request from the work queue.4. 
The portThread calls the processCallback located in Record device support.5. 
processCallback calls the low-level driver. The low-level driver read or write routine blocks until the I/O
completes or until a timeout occurs. The low-level driver routine returns the results of the I/O operation to
processCallback.

6. 

processCallback requests that the record be processed. NOTE: The process request will be made by one
of the standard callback requests rather than the port thread.

7. 

Record support calls device support again, this time with PACT 1(processing is active). Device support
updates fields in the record and returns to record support which completes record processing.

8. 

The second example shows access to a port that cannot block.
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Figure 2: Synchronous Control Flow

The sequence of record device support events that occurs starting with an application thread is pictured above in
Figure 2, and explained below in the following steps:

Record processing calls device support.1. 
Device support calls queueRequest.2. 
Since the port is synchronous, i.e. can not block, queueRequest locks the port and then calls the
processCallback.

3. 

processCallback calls the low-level driver read or write routine. The low-level driver routine returns the
results of the I/O operation to processCallback.

4. 

processCallback returns to queueRequest, which unlocks the port and returns to device support, which
returns to record support, which completes record processing.

5. 

asynDriver Structures and Interfaces

asynDriver.h describes the following:

asynStatus - An enum that describes the status returned by many methods.• 
asynException - An enum that describes exceptions.• 
asynQueuePriority - An enum that describes the queue priorities.• 
asynUser - A struture that contains generic information and is the "handle" for calling most methods.• 
asynInterface - a structure that describes an interface.• 
userCallback - a typedef for the user process callback function described above.• 
exceptionCallback - a typedef for a user callback to be called when exceptions occur.• 
timeStampCallback - a typedef for a user callback function that will be called by updateTimeStamp.• 
asynManager - An interface for communicating with asynDriver.• 
asynCommon - An interface providing methods that must be implemented by all low level drivers.• 
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asynTrace - An interface plus associated functions and definitions that implement the trace facility.• 

asynStatus

Defines the status returned by most methods. If a method returns a status other than asynSuccess, and one of the
arguments to the method is pasynUser, then the method is expected to write a message into
pasynUser->errorMessage.

typedef enum {
    asynSuccess,asynTimeout,asynOverflow,asynError,asynDisconnected,asynDisabled
}asynStatus;

asynStatus

asynSuccess The request was successful.
asynTimeout The request failed with a timeout.

asynOverflow
The driver has lost input data. This can happen if an internal buffer or the user supplied buffer
is too small. Whenever possible, low level drivers should be written so that the user can read
input in small pieces.

asynError Some other error occured.
asynDisconnected The request failed because the port is not connected.
asynDisabled The request failed because the port or device is disabled.

asynException

Defines the exceptions for method exceptionOccurred

typedef enum {
    asynExceptionConnect,asynExceptionEnable,asynExceptionAutoConnect,
    asynExceptionTraceMask,asynExceptionTraceIOMask,asynExceptionTraceInfoMask,
    asynExceptionTraceFile,asynExceptionTraceIOTruncateSize
} asynException;

asynException

asynExceptionConnect The connection state of the port or device has changed.
asynExceptionEnable The enable state of the port or device has changed.
asynExceptionAutoConnect The autoConnect state of the port or device has changed.
asynExceptionTraceMask The traceMask for the port or device has changed.
asynExceptionTraceIOMask The traceIOMask for the port or device has changed.
asynExceptionTraceInfoMask The traceInfoMask for the port or device has changed.
asynExceptionTraceFile The trace file for the port or device has changed.
asynExceptionTraceIOTruncateSize The traceIOTruncateSize for the port or device has changed.

asynQueuePriority

This defines the priority passed to queueRequest.

typedef enum {
    asynQueuePriorityLow,asynQueuePriorityMedium,asynQueuePriorityHigh,
    asynQueuePriorityConnect
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}asynQueuePriority;

asynQueuePriority

asynQueuePriorityLow Lowest queue priority.
asynQueuePriorityMedium Medium queue priority.
asynQueuePriorityHigh High queue priority.

asynQueuePriorityConnect Queue a connect or disconnect request. This priority must be used for and only for
connect/disconnect requests.

asynUser

Describes a structure that user code passes to most asynManager and driver methods. Code must allocate and free
an asynUser by calling asynManager:createAsynUser (or asynManager:duplicateAsynUser) and
asynManager:freeAsynUser.

typedef struct asynUser {
    char          *errorMessage;
    int            errorMessageSize;
    /* timeout must be set by the user */
    double         timeout;  /* Timeout for I/O operations*/
    void          *userPvt; 
    void          *userData; 
    /* The following is for use by driver */
    void          *drvUser;
    /* The following is normally set by driver via asynDrvUser->create() */
    int            reason;
    epicsTimeStamp timestamp;
    /* The following are for additional information from method calls */
    int            auxStatus;     /* For auxillary status*/
    int            alarmStatus;   /* Typically for EPICS record alarm status */
    int            alarmSeverity; /* Typically for EPICS record alarm severity */
}asynUser;

asynUser

errorMessage

When a method returns asynError it should put an error message into errorMessage via a call
to:

epicsSnprintf(pasynUser->errorMessage,pasynUser->errorMessageSize,

              "<format>",...)

The error message should not end with (nor contain) a newline character sequence (e.g. \n). It
is up to user code to decide whether and how to display the error message. Keeping newlines
out of the error message make it easy for user code to embed the error message in another
message or output format.

errorMessageSize The size of errorMessage. The user can not change this value.
timeout The number of seconds before timeout for I/O requests. This is set by the user and can be

changed between calls to a driver. If a call to a low level driver results in the driver making
many I/O requests this is the time for each I/O request.

The meaning is as follows:

asynDriver
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> 0.0 Wait for up to timeout seconds for the I/O to complete

= 0.0 Peform any I/O that can be done without blocking. Return timeout error if no I/O can be
done without blocking.

< 0.0 Infinite timeout. Wait forever for I/O to complete.

userPvt

For use by the user. The user should set this immediately after the call to
pasynManager->createAsynUser.

If this is changed while asynUser is queued, the results are undefined, e.g. it could cause a
crash.

userData Also for use by the user.

drvUser A driver can use this to hold asynUser specific data. The asynDrvUser interface is used for
communication between asynUser and the driver.

reason

Drivers and asynUsers can use this as a general purpose field. By convention it is used to
determine what "command" is being sent over a particular interface. For example an A/D
driver implementing the asynInt32 interface might define reason=0 to mean "return the A/D
conversion", while reason=1 might mean "return the amplifier gain". Typically drivers
implement the asynDrvUser interface, and use this to convert from descriptive strings for
commands (e.g. "DATA" or "GAIN" in this example) to the enum "reason". A driver that is
calling an interrupt users often uses reason to decide if the users callback should be called.
Values of reason less than 0 are reserved for standard meanings. For example
ASYN_REASON_SIGNAL is used to mean "out of band" request. The devGpib support uses
this to report SRQs.

timestamp Devices which provide their own time stamps use this field to provide the time value for
records whose TSE field is set to "-2".

auxStatus
Any method can provide additional return information in auxStatus. The meaning is
determined by the method. Callbacks can use auxStatus to set record alarm status in device
support callback functions.

alarmStatus
Any method can provide additional return information in alarmStatus. The meaning is
determined by the method. Callbacks can use alarmStatus to set record alarm status in device
support callback functions.

alarmSeverity
Any method can provide additional return information in alarmStatus. The meaning is
determined by the method. Callbacks can use alarmSeverity to set record alarm severity in
device support callback functions.

asynInterface

This defines an interface registered with asynPortManager:registerPort or asynManager:interposeInterface.

typedef struct asynInterface{
    const char *interfaceType; /*For example, asynCommonType */
    void *pinterface;          /*For example, pasynCommon */
    void *drvPvt;
}asynInterface;

asynInterface

interfaceType A character string describing the interface.
pinterface A pointer to the interface. The user must cast this to the correct type.
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drvPvt For the exclusive use of the code that called registerPort or interposeInterface.

asynManager

This is the main interface for communicating with asynDriver.

/*registerPort attributes*/
#define ASYN_MULTIDEVICE  0x0001
#define ASYN_CANBLOCK     0x0002

/*standard values for asynUser.reason*/
#define ASYN_REASON_SIGNAL -1

typedef struct interruptNode{
    ELLNODE node;
    void    *drvPvt;
}interruptNode;

typedef void (*userCallback)(asynUser *pasynUser);
typedef void (*exceptionCallback)(asynUser *pasynUser,asynException exception);
typedef void (*timeStampCallback)(void *userPvt, epicsTimeStamp *pTimeStamp);

typedef struct asynManager {
    void      (*report)(FILE *fp,int details,const char*portName);
    asynUser  *(*createAsynUser)(userCallback process,userCallback timeout);
    asynUser  *(*duplicateAsynUser)(asynUser *pasynUser,
                                 userCallback queue,userCallback timeout);
    asynStatus (*freeAsynUser)(asynUser *pasynUser);
    void       *(*memMalloc)(size_t size);
    void       (*memFree)(void *pmem,size_t size);
    asynStatus (*isMultiDevice)(asynUser *pasynUser,
                                const char *portName,int *yesNo);
    /* addr = (-1,>=0) => connect to (port,device) */
    asynStatus (*connectDevice)(asynUser *pasynUser,
                                const char *portName,int addr);
    asynStatus (*disconnect)(asynUser *pasynUser);
    asynStatus (*exceptionCallbackAdd)(asynUser *pasynUser,
                                       exceptionCallback callback);
    asynStatus (*exceptionCallbackRemove)(asynUser *pasynUser);
    asynInterface *(*findInterface)(asynUser *pasynUser,
                            const char *interfaceType,int interposeInterfaceOK);
    asynStatus (*queueRequest)(asynUser *pasynUser,
                              asynQueuePriority priority,double timeout);
    asynStatus (*cancelRequest)(asynUser *pasynUser,int *wasQueued);
    asynStatus (*blockProcessCallback)(asynUser *pasynUser, int allDevices);
    asynStatus (*unblockProcessCallback)(asynUser *pasynUser, int allDevices);
    asynStatus (*lockPort)(asynUser *pasynUser);
    asynStatus (*unlockPort)(asynUser *pasynUser);
    asynStatus (*queueLockPort)(asynUser *pasynUser);
    asynStatus (*queueUnlockPort)(asynUser *pasynUser);
    asynStatus (*canBlock)(asynUser *pasynUser,int *yesNo);
    asynStatus (*getAddr)(asynUser *pasynUser,int *addr);
    asynStatus (*getPortName)(asynUser *pasynUser,const char **pportName);
    /* drivers call the following*/
    asynStatus (*registerPort)(const char *portName,
                              int attributes,int autoConnect,
                              unsigned int priority,unsigned int stackSize);
    asynStatus (*registerInterface)(const char *portName,
                              asynInterface *pasynInterface);
    asynStatus (*exceptionConnect)(asynUser *pasynUser);
    asynStatus (*exceptionDisconnect)(asynUser *pasynUser);
    /*any code can call the following*/
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    asynStatus (*interposeInterface)(const char *portName, int addr,
                              asynInterface *pasynInterface,
                              asynInterface **ppPrev);
    asynStatus (*enable)(asynUser *pasynUser,int yesNo);
    asynStatus (*autoConnect)(asynUser *pasynUser,int yesNo);
    asynStatus (*isConnected)(asynUser *pasynUser,int *yesNo);
    asynStatus (*isEnabled)(asynUser *pasynUser,int *yesNo);
    asynStatus (*isAutoConnect)(asynUser *pasynUser,int *yesNo);
    asynStatus (*setAutoConnectTimeout)(double timeout);
    asynStatus (*waitConnect)(asynUser *pasynUser, double timeout);
    /*The following are methods for interrupts*/
    asynStatus (*registerInterruptSource)(const char *portName,
                               asynInterface *pasynInterface, void **pasynPvt);
    asynStatus (*getInterruptPvt)(asynUser *pasynUser,
                               const char *interfaceType, void **pasynPvt);
    interruptNode *(*createInterruptNode)(void *pasynPvt);
    asynStatus (*freeInterruptNode)(asynUser *pasynUser,interruptNode *pnode);
    asynStatus (*addInterruptUser)(asynUser *pasynUser,
                                  interruptNode*pinterruptNode);
    asynStatus (*removeInterruptUser)(asynUser *pasynUser,
                                  interruptNode*pinterruptNode);
    asynStatus (*interruptStart)(void *pasynPvt,ELLLIST **plist);
    asynStatus (*interruptEnd)(void *pasynPvt);
    /* Time stamp functions */
    asynStatus (*registerTimeStampSource)(asynUser *pasynUser, void *userPvt, timeStampCallback callback);
    asynStatus (*unregisterTimeStampSource)(asynUser *pasynUser);
    asynStatus (*updateTimeStamp)(asynUser *pasynUser);
    asynStatus (*getTimeStamp)(asynUser *pasynUser, epicsTimeStamp *pTimeStamp);
    asynStatus (*setTimeStamp)(asynUser *pasynUser, const epicsTimeStamp *pTimeStamp);

    const char *(*strStatus)(asynStatus status);
}asynManager;
epicsShareExtern asynManager *pasynManager;

asynManager

report
Reports status about the asynPortManager. If portName is non-NULL it
reports for a specific port. If portName is NULL then it reports for each
registered port. It also calls asynCommon:report for each port being reported.

createAsynUser

Creates an asynUser. The caller specifies two callbacks, process and timeout.
These callback are only called as a result of a queueRequest. The timeout
callback is optional. errorMessageSize characters are allocated for
errorMessage. The amount of storage can not be changed. This method doesn't
return if it is unable to allocate the storage.

duplicateAsynUser

Creates an asynUser by calling createAsynUser. It then initializes the new
asynUser as follows: The fields timeout, userPvt, userData, and drvUser are
initialized with values taken from pasynUser. Its connectDevice state is the
same as that for pasynUser.

freeAsynUser

Free an asynUser. The user must free an asynUser only via this call. If the
asynUser is connected to a port, asynManager:disconnect is called. If the
disconnect fails, this call will also fail. The storage for the asynUser is saved
on a free list and will be reused in later calls to createAsynUser or
duplicateAsynUser. Thus continually calling createAsynUser (or
duplicateAsynUser) and freeAsynUser is efficient.

memMalloc Allocate/Free memory. memMalloc/memFree maintain a set of freelists of
different sizes. Thus any application that needs storage for a short time can use
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memFree memMalloc/memFree to allocate and free the storage without causing
memory fragmentation. The size passed to memFree MUST be the same as
the value specified in the call to memMalloc.

isMultiDevice Answers the question "Does the port support multiple devices?" This method
can be called before calling connectDevice.

connectDevice

Connect the asynUser structure to a device specified by portName, addr. The
port Name is the same as that specified in a call to registerPort. The call will
fail if the asynUser is already connected to a device. If the port does not
support multiple devices, than addr is ignored. connectDevice only connects
the asynUser to the port driver for the portName,addr. The port driver may or
may not be connected to the actual device. Thus, connectDevice and
asynCommon:connect are completely different.

See the Theory of Operation section for a description of the difference
between single and multi-device port drivers.

disconnect

Disconnect the asynUser from the port,addr to which it is connected via a
previous call to connectDevice. The call will fail if the asynUser is queued or
locked, or has a callback registered via exceptionCallbackAdd. Note that
asynManager:disconnect and asynCommon:disconnect are completely
different.

exceptionCallbackAdd

Callback will be called whenever one of the exceptions defined by
asynException occurs. The callback can call isConnected, isEnabled, or
isAutoConnect to find the connection state. asynTrace provides methods to
find out the current trace settings.

exceptionCallbackRemove Callback is removed. This must be called before disconnect.

findInterface

Find a driver interface. If interposeInterfaceOK is true, then findInterface
returns the last interface registered or interposed. Otherwise, the interface
registered by registerPort is returned. It returns 0 if the interfaceType is not
supported.

The user needs the address of the driver's interface and of pdrvPvt so that calls
can be made to the driver. For example:

asynInterface *pasynInterface;
asynOctet *pasynOctet;
void *pasynOctetPvt;
...
pasynInterface = pasynManager->findInterface(
        pasynUser,asynOctetType,1);
if(!pasynInterface) { /*error do something*/}
pasynOctet = (asynOctet *)pasynInterface->pinterface;
pasynOctetPvt = pasynInterface->pdrvPvt;
...
/* The following call must be made from a callback */
pasynOctet->read(pasynOctetPvt,pasynUser,...

queueRequest When registerPort is called, the caller must specify if it can block, i.e. attribute
bit ASYN_CANBLOCK is set or cleared. If the port has been registered with
ASYN_CANBLOCK true then the request is put on a queue for the thread
associated with the queue. If the port has been registered with
ASYN_CANBLOCK false then queueRequest locks the port and calls the
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process callback. In either case the process callback specified in the call to
createAsynUser is called.

If the asynUser is already on a queue, asynError is returned. The timeout starts
when the request is queued. A value less than or equal to 0.0 means no
timeout. The request is removed from the queue before the callback is called.
Callbacks are allowed to make requests to asynManager such as
queueRequest, blockProcessCallback, etc. It is even permissible to call
freeAsynUser from a callback but the request will be delayed until after the
callback completes.

The priority asynQueuePriorityConnect must be used for
asynCommon:connect and asynCommon:disconnect calls, and must NOT be
used for any other calls.

If a timeout callback was not passed to createAsynUser and a queueRequest
with a non-zero timeout is requested, the request fails.

Attempts to queue a request other than a connection request to a disconnected
port will fail unless the reason is
ASYN_REASON_QUEUE_EVEN_IF_NOT_CONNECTED.

cancelRequest
If a asynUser is queued, remove it from the queue. If either the process or
timeout callback is active when cancelRequest is called than cancelRequest
will not return until the callback completes.

blockProcessCallback

unblockProcessCallback

blockProcessCallback is a request to prevent acccess to a device or port by
other asynUsers between queueRequests. blockProcessCallback can be called
from a processCallback or when the asynUser has no request queued. When
called from processCallback blocking starts immediately, otherwise blocking
starts the next time processCallback is called. Blocking means that no other
asynUser's processCallback will be called until unblockProcessCallback is
called. Note the following restrictions for blockProcessCallback:

blockProcessCallback only works with drivers that can block and an
error is returned if it is called for non-blocking drivers.

• 

queueRequests that specify a priority of asynQueuePriorityConnect
are not blocked.

• 

It is permissible to simultaneously block allDevices and also the device to
which the asynUser is connected.

lockPort/unlockPort

Lock access to a port driver. This is used by code that is willing to block while
making calls to a port driver. The code can call lockPort, make an arbitrary
number of calls to the port driver, and than call unlockPort. Other code that
calls queueRequest and/or lockPort will be delayed between the calls to
lockPort and unlockPort.

queueLockPort/queueUnlockPort Lock access to a port driver. This is used by code that is willing to block while
making calls to a port driver. The code can call lockPort, make an arbitrary
number of calls to the port driver, and than call unlockPort. Other code that
calls queueRequest and/or lockPort will be delayed between the calls to
lockPort and unlockPort. The difference between lockPort and queueLockPort
is that queueLockPort queues a request to lock the port, using the same queues
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as queueRequest. This means that a thread that repeatedly calls
queueLockPort without sleeping between calls will still allow other threads to
access the port. This is not true with lockPort, which will take a mutex as soon
as the port is free, and can prevent other threads from accessing the port at all.

canBlock yesNo is set to (0,1), i.e. (false,true) if calls to the low level driver can block.
The value is determined by the attributes passed to registerPort.

getAddr

*addr is set equal to the address which the user specified in the call to
connectDevice or -1 if the port does not support multiple devices.

See the Theory of Operation section for a description of the difference
between single and multi-device port drivers.

getPortName *pportName is set equal to the name of the port to which the user is
connected.

registerPort

This method is called by drivers. A call is made for each port instance.
Attributes is a set of bits. Currently two bits are defined:
ASYN_MULTIDEVICE and ASYN_CANBLOCK. The driver must specify
these properly. autoConnect, which is (0,1) for (no,yes), provides the initial
value for the port and all devices connected to the port. priority and stacksize
are only relevant if ASYN_CANBLOCK=1, in which case asynManager uses
these values when it creates the port thread with epicsThreadCreate(). If
priority is 0, then the default value epicsThreadPriorityMedium will be
assigned. If stackSize is 0, the default value of
epicsThreadGetStackSize(epicsThreadStackMedium) will be assigned. The
portName argument specifies the name by which the upper levels of the asyn
code will refer to this communication interface instance. The registerPort
method makes an internal copy of the string to which the name argument
points.

registerInterface

This is called by port drivers for each supported interface. This method does
not make a copy of the asynInterface to which the pasynInterface argument
points. Callers must store the asynInteface in a location which is retained for
the lifetime of the port. This is commonly done by placing the asynInterface
structure in the 'driver private' structure.

exceptionConnect This method must be called by the driver when and only when it connects to a
port or device.

exceptionDisconnect This method must be called by the driver when and only when it disconnects
from a port or device.

interposeInterface This is called by a software layer between client code and the port driver. For
example, if a device echos writes then a software module that issues a read
after each write could be created and call interposeInterface for interface
asynOctet.

Multiple interposeInterface calls for a port/addr/interface can be issued.
*ppPrev is set to the address of the previous asynInterface. Thus the software
module that last called interposeInterface is called by user code. It in turn can
call the software module that was the second to last to call interposeInterface.
This continues until the actual port driver is called.

interposeInterface can also be called with an asynInterface that has not been
previously registered or replaced. In this case *ppPrev will be null. Thus, new
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interfaces that are unknown to the low level driver can be implemented.

enable If enable is set yes, then queueRequests are not dequeued unless their queue
timeout occurs.

autoConnect

If autoConnect is true and the port or device is not connected when a user
callback is scheduled to be called, asynManager calls
pasynCommon->connect. See the discussion of Flow of Control below for
details.

isConnected *yesNo is set to (0,1) if the port or device (is not, is) connected.
isEnabled *yesNo is set to (0,1) if the port or device (is not, is) enabled.

isAutoConnect *yesNo is set to (0,1) if the portThread (will not, will) autoConnect for the
port or device.

setAutoConnectTimeout

Changes the timeout when waiting for the initial connection callback from
port drivers. This callback occurs in response to asynManager queueing a
connection request, which happens when the port driver registers its
asynCommon interface. The default timeout is 0.5 seconds.

waitConnect Wait for up to timeout seconds for the port/device to connect.

registerInterruptSource

If a low level driver supports interrupts it must call this for each interface that
supports interrupts. pasynPvt must be the address of a void * that will be given
a value by registerInterruptSource. This argument is passed interruptStart and
interruptEnd.

getInterruptPvt

Any code that wants to call createInterruptNode but does not know the adresss
of pasynPvt can find it via this method. The caller must be connected to a
device, i.e. must have called connectDevice. If the caller is not connected,
getInterruptPvt returns asynError.

createInterruptNode

freeInterruptNode

These methods are the only way a user can allocate and free an interruptNode.
pasynPvt is the value obtained from getInterruptPvt.
createInterruptNode/freeInterruptNode are separate methods rather than being
done automatically by addInterruptUser/removeInterruptUser so that
addInterruptUser/removeInterruptUser can be efficient.

addInterruptUser

removeInterruptUser

Code that implements registerInterruptUser/cancelInterruptUser must call
addInterruptUser/removeInterruptUser to add and remove users from the list
or else calls to interruptStart/interruptEnd will not work. This is an efficient
operation so that a user can repeatedly call
registerInterruptUser/cancelInterruptUser. If either of these is called while a
interrupt is being processed, i.e. between calls to interruptStart/interruptEnd,
the call will block until interruptEnd is called. The process callback for the
asynUser specified in the call to addInterruptUser must not call
removeInterruptUser or it will block forever.

interruptStart

interruptEnd

The code that implements interrupts is interface dependent. The only service
asynManager provides is a thread-safe implemention of the user list. When the
code wants to call the callback specified in the calls to registerInterruptUser, it
calls interruptStart to obtain the list of callbacks. When it is done it calls
interruptEnd. If any requests are made to
addInterruptUser/removeInterruptUser between the calls to interruptStart and
interruptEnd, asynManager delays the requests until interruptEnd is called.

registerTimeStampSource Registers a user-defined time stamp callback function.
unregisterTimeStampSource Unregisters any user-defined timestamp callback function and reverts to the
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default timestamp source function in asynManager, which simply calls
epicsTimeGetCurrent().

updateTimeStamp
Set the current time stamp for this port by calling either the default timestamp
source, or a user-defined timestamp source that was registered with
registerTimeStampSource.

getTimeStamp Get the current time stamp for this port that was returned by the most recent
call to updateTimeStamp.

setTimeStamp Set the current time stamp for this port directly from the timestamp value
passed to this function.

strStatus Returns a descriptive string corresponding to the asynStatus value.

asynCommon

asynCommon describes the methods that must be implemented by drivers.

/* Device Interface supported by ALL asyn drivers*/
#define asynCommonType "asynCommon"
typedef struct  asynCommon {
    void       (*report)(void *drvPvt,FILE *fp,int details);
    /*following are to connect/disconnect to/from hardware*/
    asynStatus (*connect)(void *drvPvt,asynUser *pasynUser);
    asynStatus (*disconnect)(void *drvPvt,asynUser *pasynUser);
}asynCommon;

asynCommon

report Generates a report about the hardware device. This is the only asynCommon method that does not
have to be called by the queueRequest callback or between calls to lockPort/unlockPort.

connect Connect to the hardware device or communication path. The queueRequest must specify priority
asynQueuePriorityConnect.

disconnect Disconnect from the hardware device or communication path. The queueRequest must specify
priority asynQueuePriorityConnect.

asynCommonSyncIO

asynCommonSyncIO provides a convenient interface for software that needs to perform "synchronous" operations
to an asyn device, i.e. that blocks while waiting for the port to be available and for the operation to complete. The
code does not need to handle callbacks or understand the details of the asynManager and asynCommon interfaces.

typedef struct asynCommonSyncIO {
    asynStatus (*connect)(const char *port, int addr, 
                          asynUser **ppasynUser, const char *drvInfo);
    asynStatus (*disconnect)(asynUser *pasynUser);
    asynStatus (*connectDevice)(asynUser *pasynUser);
    asynStatus (*disconnectDevice)(asynUser *pasynUser);
    asynStatus (*report)(asynUser *pasynUser, FILE *fd, int details);
} asynCommonSyncIO;
epicsShareExtern asynCommonSyncIO *pasynCommonSyncIO;

Note that there is a potential for confusion in the connect* and disconnect* function names of this interface. For
consistency with the other SyncIO interfaces, connect calls pasynManager->connectDevice, disconnect calls
pasynManager->disconnect, connectDevice calls asynCommon->connect, and disconnectDevice calls
asynCommon->disconnect.
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asynDrvUser

asynDrvUser provides methods that allow an asynUser to communicate user specific information to/from a port
driver

#define asynDrvUserType "asynDrvUser"
typedef struct  asynDrvUser {
    /*The following do not have to be called via queueRequest callback*/
    asynStatus (*create)(void *drvPvt,asynUser *pasynUser,
        const char *drvInfo, const char **pptypeName,size_t *psize);
    asynStatus (*getType)(void *drvPvt,asynUser *pasynUser,
        const char **pptypeName,size_t *psize);
    asynStatus (*destroy)(void *drvPvt,asynUser *pasynUser);
}asynDrvUser;

asynDrvUser

create

The user, i.e. device support calls create. The driver can create any resources it needs. It can use
pasynUser->drvUser to provide access to the resources. If the asynUser and the driver both know how
to access the resources they must agree about the name for the resource and a size. If pptypeName is
not null the driver can give a value to *pptypeName. If psize is not null the driver can give a value to
*psize. Unless asynUser receives a typeName and size that it recognizes it must not access
asynUser.drvUser.

getType If other code, e.g. an interposeInterface wants to access asynUser.drvUser it must call this and verify
that typeName and size are what it expects.

destroy Destroy the resources created by create and set asynUser.drvUser null.

asynLockPortNotify

This is provided for port drivers that are an asynUser of another port driver. For example a serial bus driver can be
implemented by connecting to a standard serial port to perform the actual I/O. When the serial bus port is locked,
either by the requester calling lockPort or because a queueRequest was dequeued, then the serial bus driver needs
to lock the associated serial port.

The serial bus driver registers interface asynLockPortNotify. Whenever the serial bus port is locked, asynManager
calls pasynLockPortNotify.lock. The serial bus driver calls asynManager.lockPort for the serial port to which it is
connected. Similarly for unlockPort. Thus while the serial bus port is locked, the serial bus is also locked.

asynLockPortNotify is used only by asynManager itself. It is not put in the list of interfaces for the port.

asynLockPortNotify is:

#define asynLockPortNotifyType "asynLockPortNotify"
typedef struct  asynLockPortNotify {
    asynStatus (*lock)(void *drvPvt,asynUser *pasynUser);
    asynStatus (*unlock)(void *drvPvt,asynUser *pasynUser);
}asynLockPortNotify;

asynLockPortNotify

lock Called when asynManager.lockPort is called. The driver normally calls asynManager.lockPort for the
port to which it is connected.

unlock
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Called when asynManager.unlockPort is called. The driver normally calls asynManager.unlockPort for
the port to which it is connected.

asynOption

asynOption provides a generic way of setting driver specific options. For example the serial port driver uses this
to specify baud rate, stop bits, etc.

#define asynOptionType "asynOption"
/*The following are generic methods to set/get device options*/
typedef struct asynOption {
    asynStatus (*setOption)(void *drvPvt, asynUser *pasynUser,
                                const char *key, const char *val);
    asynStatus (*getOption)(void *drvPvt, asynUser *pasynUser,
                                const char *key, char *val, int sizeval);
}asynOption;

asynOption

setOption Set value associated with key.
getOption Get value associated with key.

Trace Interface

/*asynTrace is implemented by asynManager*/
/*All asynTrace methods can be called from any thread*/
/* traceMask definitions*/
#define ASYN_TRACE_ERROR     0x0001
#define ASYN_TRACEIO_DEVICE  0x0002
#define ASYN_TRACEIO_FILTER  0x0004
#define ASYN_TRACEIO_DRIVER  0x0008
#define ASYN_TRACE_FLOW      0x0010
#define ASYN_TRACE_WARNING   0x0020

/* traceIO mask definitions*/
#define ASYN_TRACEIO_NODATA 0x0000
#define ASYN_TRACEIO_ASCII  0x0001
#define ASYN_TRACEIO_ESCAPE 0x0002
#define ASYN_TRACEIO_HEX    0x0004

/* traceInfo mask definitions*/
#define ASYN_TRACEINFO_TIME 0x0001
#define ASYN_TRACEINFO_PORT 0x0002
#define ASYN_TRACEINFO_SOURCE 0x0004
#define ASYN_TRACEINFO_THREAD 0x0008

/* asynPrint and asynPrintIO are macros that act like
   int asynPrintSource(asynUser *pasynUser,int reason, __FILE__, __LINE__, const char *format, ... );
   int asynPrintIOSource(asynUser *pasynUser,int reason,
        const char *buffer, size_t len, __FILE__, __LINE__, const char *format, ... );
*/
typedef struct asynTrace {
    /* lock/unlock are only necessary if caller performs I/O other than */
    /* by calling asynTrace methods                                     */
    asynStatus (*lock)(asynUser *pasynUser);
    asynStatus (*unlock)(asynUser *pasynUser);
    asynStatus (*setTraceMask)(asynUser *pasynUser,int mask);
    int        (*getTraceMask)(asynUser *pasynUser);
    asynStatus (*setTraceIOMask)(asynUser *pasynUser,int mask);
    int        (*getTraceIOMask)(asynUser *pasynUser);
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    asynStatus (*setTraceInfoMask)(asynUser *pasynUser,int mask);
    int        (*getTraceInfoMask)(asynUser *pasynUser);
    asynStatus (*setTraceFile)(asynUser *pasynUser,FILE *fp);
    FILE       *(*getTraceFile)(asynUser *pasynUser);
    asynStatus (*setTraceIOTruncateSize)(asynUser *pasynUser,size_t size);
    size_t     (*getTraceIOTruncateSize)(asynUser *pasynUser);
#if defined(__GNUC__) && (__GNUC__ < 3)
    /* GCC 2.95 does not allow EPICS_PRINTF_STYLE on function pointers */
    int        (*print)(asynUser *pasynUser,int reason, const char *pformat, ...);
    int        (*printSource)(asynUser *pasynUser,int reason, const char *fileName, int line, const char *pformat, ...);
    int        (*vprint)(asynUser *pasynUser,int reason, const char *pformat, va_list pvar);
    int        (*vprintSource)(asynUser *pasynUser,int reason, const char *file, int line, const char *pformat, va_list pvar);
    int        (*printIO)(asynUser *pasynUser,int reason,
                    const char *buffer, size_t len,const char *pformat, ...);
    int        (*printIOSource)(asynUser *pasynUser,int reason,
                    const char *buffer, size_t len,const char *file, int line, const char *pformat, ...);
    int        (*vprintIO)(asynUser *pasynUser,int reason,
                    const char *buffer, size_t len,const char *pformat, va_list pvar);
    int        (*vprintIOSource)(asynUser *pasynUser,int reason,
                    const char *buffer, size_t len,const char *file, int line, const char *pformat, va_list pvar);
#else
    int        (*print)(asynUser *pasynUser,int reason, const char *pformat, ...) EPICS_PRINTF_STYLE(3,4);
    int        (*printSource)(asynUser *pasynUser,int reason, const char *fileName, int line, const char *pformat, ...) EPICS_PRINTF_STYLE(5,6);
    int        (*vprint)(asynUser *pasynUser,int reason, const char *pformat, va_list pvar) EPICS_PRINTF_STYLE(3,0);
    int        (*vprintSource)(asynUser *pasynUser,int reason, const char *file, int line, const char *pformat, va_list pvar) EPICS_PRINTF_STYLE(5,0);
    int        (*printIO)(asynUser *pasynUser,int reason,
                    const char *buffer, size_t len,const char *pformat, ...) EPICS_PRINTF_STYLE(5,6);
    int        (*printIOSource)(asynUser *pasynUser,int reason,
                    const char *buffer, size_t len,const char *file, int line, const char *pformat, ...) EPICS_PRINTF_STYLE(7,8);
    int        (*vprintIO)(asynUser *pasynUser,int reason,
                    const char *buffer, size_t len,const char *pformat, va_list pvar) EPICS_PRINTF_STYLE(5,0);
    int        (*vprintIOSource)(asynUser *pasynUser,int reason,
                    const char *buffer, size_t len,const char *file, int line, const char *pformat, va_list pvar) EPICS_PRINTF_STYLE(7,0);
#endif
}asynTrace;
epicsShareExtern asynTrace *pasynTrace;

asynTrace

asynDriver provides a trace facility with the following attributes:

Tracing is turned on/off for individual devices, i.e. a portName, addr.• 
Trace has a global trace mask for asynUsers not connected to a port or port, addr.• 
The output is sent to a file or to stdout or to errlog.• 
A mask determines the type of information that can be displayed. The various choices can be ORed
together. The default value of this mask when a port is created is ASYN_TRACE_ERROR.

ASYN_TRACE_ERROR Run time errors are reported, e.g. timeouts.♦ 
ASYN_TRACEIO_DEVICE Device support reports I/O activity.♦ 
ASYN_TRACEIO_FILTER Any layer between device support and the low level driver reports
any filtering it does on I/O.

♦ 

ASYN_TRACEIO_DRIVER Low level driver reports I/O activity.♦ 
ASYN_TRACE_FLOW Report logic flow. Device support should report all queue requests,
callbacks entered, and all calls to drivers. Layers between device support and low level drivers
should report all calls they make to lower level drivers. Low level drivers report calls they make
to other support.

♦ 

ASYN_TRACE_WARNING Report warnings, i.e. conditions that are between
ASYN_TRACE_ERROR and ASYN_TRACE_FLOW.

♦ 

• 
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Another mask determines how message buffers are printed. The various choices can be ORed together.
The default value of this mask when a port is created is ASYN_TRACEIO_NODATA.

ASYN_TRACEIO_NODATA Don't print any data from the message buffers.♦ 
ASYN_TRACEIO_ASCII Print with a "%s" style format.♦ 
ASYN_TRACEIO_ESCAPE Call epicsStrPrintEscaped.♦ 
ASYN_TRACEIO_HEX Print each byte with " %2.2x".♦ 

• 

Another mask determines what information is printed at the beginning of each message. The various
choices can be ORed together. The default value of this mask when a port is created is
ASYN_TRACEINFO_TIME.

ASYN_TRACEINFO_TIME prints the date and time of the message.♦ 
ASYN_TRACEINFO_PORT prints [port,addr,reason], where port is the port name, addr is the
asyn address, and reason is pasynUser->reason. These are the 3 pieces of "addressing"
information in asyn.

♦ 

ASYN_TRACEINFO_SOURCE prints the file name and line number, i.e.
[__FILE__,__LINE__] where the asynPrint or asynPrintIO statement occurs.

♦ 

ASYN_TRACEINFO_THREAD prints the thread name, thread ID and thread priority, i.e.
[epicsThreadGetNameSelf(), epicsThreadGetIdSelf(), epicsThreadGetPrioritySelf()].

♦ 

• 

In order for the trace facility to perform properly; device support and all drivers must use the trace facility. Device
and driver support can directly call the asynTrace methods. The asynPrint and asynPrintIO macros are provided
so that it is easier for device/driver support. Support can have calls like:

    asynPrint(pasynUser,ASYN_TRACE_FLOW,"%s Calling queueRequest\n",
        someName);

The asynPrintIO call is designed for device support or drivers that issue read or write requests. They make calls
like:

    asynPrintIO(pasynUser,ASYN_TRACEIO_DRIVER,data,nchars,"%s nchars %d",

                someName,nchars);

The asynTrace methods are implemented by asynManager. These methods can be used by any code that has
created an asynUser and is connected to a device. All methods can be called by any thread. That is, an application
thread and/or a portThread. If a thread performs all I/O via calls to print or printIO, then it does not have to call
lock or unlock. If it does want to do its own I/O, it must lock before any I/O and unlock after. For example:

    pasynTrace->lock(pasynUser);
    fd = pasynTrace->getTraceFile(pasynUser);
    /*perform I/O to fd */
    pasynTrace->unlock(pasynUser);

If the asynUser is not connected to a port, i.e. pasynManager->connectDevice has not been called, then a "global"
device is assumed. This is useful when asynPrint is called before connectDevice.

asynTrace

lock/unlock These are only needed for code that call asynTrace.print or asynTrace.printIO instead
of asynPrint and asynPrintIO.

print, and printIO both lock while performing their operations. The get methods do not
lock (except for getTraceFile) and they are safe. Except for setTraceFile the set

asynDriver

asynTrace 29



methods do not block, since worst that can happen is that the user gets a little more or a
little less output.

setTraceMask
Set the trace mask. Normally set by the user requesting it via a shell command or the
devTrace device support. Setting the trace mask for a port also sets the trace mask for
all devices connected to that port

getTraceMask Get the trace mask. Device support that wants to issue trace messages calls this to see
what trace options have been requested.

setTraceIOMask
Set the traceIO mask. Normally set by the user requesting it via a shell command or the
devTrace device support. Setting the traceIO mask for a port also sets the traceIO mask
for all devices connected to that port

getTraceIOMask
Get the traceIO mask. Support that wants to issue its own IO messages instead of
calling asynPrintIO should call this and honor the mask settings. Most code will not
need it.

setTraceInfoMask
Set the traceInfo mask. Normally set by the user requesting it via a shell command or
the devTrace device support. Setting the traceInfo mask for a port also sets the
traceInfo mask for all devices connected to that port

getTraceInfoMask
Get the traceInfo mask. Support that wants to issue its own IO messages instead of
calling asynPrint should call this and honor the mask settings. Most code will not need
it.

setTraceFile

Set the stream to use for output. A NULL argument means use errlog. Normally set by
the user requesting it via a shell command or by the devTrace device support. If the
current output stream is none of (NULL, stdout, stderr) then the current output stream
is closed before the new stream is used.

getTraceFile

Get the file descriptor to use for output. Device support that wants to issue its own IO
messages instead of calling asynPrintIO should call this and honor the mask settings. In
this case, lock must have been called first. Most code will not need it. If the return
value is 0, then ouput should be directed to errlog.

setTraceIOTruncateSize

Determines how much data is printed by printIO. In all cases it determines how many
bytes of the buffer are displayed. The actual number of characters printed depends on
the traceIO mask. For example ASYN_TRACEIO_HEX results in 3 characters being
printed for each byte. Normally set by the user requesting it via a shell command or the
devTrace device support.

getTraceIOTruncateSize Get the current truncate size. Called by asynPrintIO. Code that does its own I/O should
also support the traceIO mask.

print
If reason ORed with the current traceMask is not zero, then the message is printed.
This method is provided for backwards compatibility. The asynPrint macro now calls
printSource().

printSource
If reason ORed with the current traceMask is not zero, then the message is printed.
Most code should call asynPrint instead of calling this method. This method is the
same as print() but with the additional file and line arguments.

vprint This is the same as print, but using a va_list as its final argument.
vprintSource This is the same as printSource, but using a va_list as its final argument.

printIO

If reason ORed with the current traceMask is not zero then the message is printed. If
len is >0, then the buffer is printed using the traceIO mask and
getTraceIOTruncateSize. This method is provided for backwards compatibility. The
asynPrintIO macro now calls printIOSource().

printIOSource
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If reason ORed with the current traceMask is not zero then the message is printed. If
len is >0, then the buffer is printed using the traceIO mask and
getTraceIOTruncateSize. Most code should call asynPrintIO instead of calling this
method. This method is the same as printIO() but with the additional file and line
arguments.

vprintIO This is the same as printIO, but using a va_list as its final argument.
vprintIOSource This is the same as printIOSource, but using a va_list as its final argument.

Standard Message Based Interfaces

These are interfaces for communicating with message based devices, where message based means that the device
communicates via octet strings, i.e. arrays of 8 bit bytes. Three interfaces are provided: asynOctet, asynOctetBase,
and asynOctetSyncIO. asynOctet is generic message based interface. asynOctetBase is an interface used by port
drivers that implement asynOctet. It's primary purpose is to help with interrupt support. asynOctetSyncIO
provides a synchronous inteface to asynOctet and can be used by code that is willing to block.

asynOctet

asynOctet describes the methods implemented by drivers that use octet strings for sending commands and
receiving responses from a device.

NOTE: The name octet is used instead of ASCII because it implies that communication is done via 8-bit bytes.

#define ASYN_EOM_CNT 0x0001 /*Request count reached*/
#define ASYN_EOM_EOS 0x0002 /*End of String detected*/
#define ASYN_EOM_END 0x0004 /*End indicator detected*/

typedef void (*interruptCallbackOctet)(void *userPvt, asynUser *pasynUser,
              char *data,size_t numchars, int eomReason);

typedef struct asynOctetInterrupt {
    asynUser *pasynUser;
    int      addr;
    interruptCallbackOctet callback;
    void *userPvt;
}asynOctetInterrupt;

#define asynOctetType "asynOctet"
typedef struct asynOctet{
    asynStatus (*write)(void *drvPvt,asynUser *pasynUser,
                    const char *data,size_t numchars,size_t *nbytesTransfered);
    asynStatus (*read)(void *drvPvt,asynUser *pasynUser,
                    char *data,size_t maxchars,size_t *nbytesTransfered,
                    int *eomReason);
    asynStatus (*flush)(void *drvPvt,asynUser *pasynUser);
    asynStatus (*registerInterruptUser)(void *drvPvt,asynUser *pasynUser,
                    interruptCallbackOctet callback, void *userPvt,
                    void **registrarPvt);
    asynStatus (*cancelInterruptUser)(void *drvPvt, asynUser *pasynUser,
                    void *registrarPvt);
    asynStatus (*setInputEos)(void *drvPvt,asynUser *pasynUser,
                    const char *eos,int eoslen);
    asynStatus (*getInputEos)(void *drvPvt,asynUser *pasynUser,
                    char *eos, int eossize, int *eoslen);
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    asynStatus (*setOutputEos)(void *drvPvt,asynUser *pasynUser,
                    const char *eos,int eoslen);
    asynStatus (*getOutputEos)(void *drvPvt,asynUser *pasynUser,
                    char *eos, int eossize, int *eoslen);
}asynOctet;
/* asynOctetBase does the following:
   calls  registerInterface for asynOctet.
   Implements registerInterruptUser and cancelInterruptUser
   Provides default implementations of all methods.
   registerInterruptUser and cancelInterruptUser can be called
   directly rather than via queueRequest.
*/

#define asynOctetBaseType "asynOctetBase"
typedef struct asynOctetBase {
    asynStatus (*initialize)(const char *portName,
        asynDriverasynInterface *pasynOctetInterface,
        int processEosIn,int processEosOut,int interruptProcess);
    void       (*callInterruptUsers)(asynUser *pasynUser,void *pasynPvt,
        char *data,size_t *nbytesTransfered,int *eomReason);
} asynOctetBase;
epicsShareExtern asynOctetBase *pasynOctetBase;

asynOctet

write
Send a message to the device. *nbytesTransfered is the number of 8-bit bytes sent to the
device. Interpose or driver code may add end of string terminators to the message but the
extra characters are not included in *nbytesTransfered.

read

Read a message from the device. *nbytesTransfered is the number of 8-bit bytes read from
the device. If read returns asynSuccess than eomReason ( some combination of
ASYN_EOM_CNT, ASYN_EOM_EOS, and ASYN_EOM_END)tells why the read
completed. Interpose or driver code may strip end of string terminators from the message.
If it does the first eos character will be replaced by null and the eos characters will not be
included in nbytesTransfered.

flush Flush the input buffer.

registerInterruptUser Register a user that will be called whenever a new message is received. NOTE: The
callback must not block and must not call registerInterruptUser or cancelInterruptUser.

cancelInterruptUser Cancel a registered user.

setInputEos Set End Of String for input. For example "\n". Note that gpib drivers usually accept at
most a one character terminator.

getInputEos Get the current End of String.
setOutputEos Set End Of String for output.
getOutputEos Get the current End of String.
asynOctetBase is an interface and implementation for drivers that implement interface asynOctet. asynOctetBase
implements registerInterruptUser and cancelInterruptUser.

For single device support, it can optionally implement interrupt support. A driver that implements interrupts must
call registerInterruptSource. If it asks asynOctetBase to handle interrupts it calls asynOctetBase:callInterruptUsers
when it has new data.

For single device support asynOctetBase can optionally call asynInterposeEosConfig to handle end of string
processing for input and/or output.
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Any null method in the interface passed to initialize are replaced by a method supplied by asynOctetBase.

For an example of how to use asynOctetBase look at asyn/testApp/src/echoDriver.c

asynOctetBase

initialize

After a driver calls registerPort it can call:

pasynOctetBase->initialize(...

Any null methods in the asynInterface are replaced by default implementations. If the port is
not multi-device and either processEosIn or processEosOut is specified,
asynInterposeEosConfig is called. If the port is not multi-device and interruptProcess is
specified, then whenever read is called, asynBase calls all the registered interrupt users.
asynOctetBase can not implement processEosIn, processEosOut, and interruptProcess if the
port is a multi-device port. Since this method is called only during initialization it can be
called directly rather than via queueRequest.

callInterruptUsers Calls the callbacks registered via registerInterruptUser.

asynOctetSyncIO

asynOctetSyncIO provides a convenient interface for software that needs to perform "synchronous" I/O to an asyn
device, i.e. that starts an I/O operation and then blocks while waiting for the response. The code does not need to
handle callbacks or understand the details of the asynManager and asynOctet interfaces. Examples include motor
drivers running in their own threads, SNL programs, and the shell commands described later in this document.

typedef struct asynOctetSyncIO {
   asynStatus (*connect)(const char *port, int addr,
                         asynUser **ppasynUser, const char *drvInfo);
   asynStatus (*disconnect)(asynUser *pasynUser);
   asynStatus (*write)(asynUser *pasynUser,
                  char const *buffer, size_t buffer_len,
                  double timeout,size_t *nbytesTransfered);
   asynStatus (*read)(asynUser *pasynUser, char *buffer, size_t buffer_len,
                  double timeout, size_t *nbytesTransfered,int *eomReason);
   asynStatus (*writeRead)(asynUser *pasynUser,
                  const char *write_buffer, size_t write_buffer_len,
                  char *read_buffer, size_t read_buffer_len,
                  double timeout,
                  size_t *nbytesOut, size_t *nbytesIn, int *eomReason);
   asynStatus (*flush)(asynUser *pasynUser);
   asynStatus (*setInputEos)(asynUser *pasynUser,
                  const char *eos,int eoslen);
   asynStatus (*getInputEos)(asynUser *pasynUser,
                  char *eos, int eossize, int *eoslen);
   asynStatus (*setOutputEos)(asynUser *pasynUser,
                  const char *eos,int eoslen);
   asynStatus (*getOutputEos)(asynUser *pasynUser,
                  char *eos, int eossize, int *eoslen);
   asynStatus (*writeOnce)(const char *port, int addr,
                  char const *buffer, size_t buffer_len, double timeout,
                  size_t *nbytesTransfered, const char *drvInfo);
   asynStatus (*readOnce)(const char *port, int addr,
                  char *buffer, size_t buffer_len, double timeout,
                  size_t *nbytesTransfered,int *eomReason, const char *drvInfo);
   asynStatus (*writeReadOnce)(const char *port, int addr,
                  const char *write_buffer, size_t write_buffer_len,
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                  char *read_buffer, size_t read_buffer_len,
                  double timeout,
                  size_t *nbytesOut, size_t *nbytesIn, int *eomReason,
                  const char *drvInfo);
   asynStatus (*flushOnce)(const char *port, int addr,const char *drvInfo);
   asynStatus (*setInputEosOnce)(const char *port, int addr,
                  const char *eos,int eoslen,const char *drvInfo);
   asynStatus (*getInputEosOnce)(const char *port, int addr,
                  char *eos, int eossize, int *eoslen,const char *drvInfo);
   asynStatus (*setOutputEosOnce)(const char *port, int addr,
                  const char *eos,int eoslen,const char *drvInfo);
   asynStatus (*getOutputEosOnce)(const char *port, int addr,
                  char *eos, int eossize, int *eoslen,const char *drvInfo);
} asynOctetSyncIO;
epicsShareExtern asynOctetSyncIO *pasynOctetSyncIO;

asynOctetSyncIO

connect Connects to an asyn port and address, returns a pointer to an asynUser structure.
disconnect Disconnect. This frees all resources allocated by connect.
write Calls asynOctet->write and waits for the operation to complete or time out.
read Calls asynOctet->read. Waits for the operation to complete or time out.

writeRead Calls pasynOctet->flush, pasynOctet->write, and asynOctet->read. Waits for the operations to
complete or time out.

flush Calls pasynOctet->flush
setInputEos Calls pasynOctet->setInputEos
getInputEos Calls pasynOctet->getInputEos
setOutputEos Calls pasynOctet->setOutputEos
getOutputEos Calls pasynOctet->getOutputEos
writeOnce This does a connect, write, and disconnect.
readOnce This does a connect, read, and disconnect.
readOnce This does a connect, read, and disconnect.
writeReadOnce This does a connect, writeRead, and disconnect.

End of String Support

asynOctet provides methods for handling end of string (message) processing. It does not specify policy. Device
support code, interpose layers, or low level drivers can all handle EOS processing. An application developer must
decide what policy will be followed for individual devices. The policy will be determined by the device, the
device support, and the driver.

Standard Register Based Interfaces

Introduction

This section descibes interfaces for register based devices. Support is provided for:

Int32 - registers appear as 32 integers• 
UInt32Digital - registers appear a 32 bit unsigned integers and masks can be used to address specific bits.• 
Float64 - registers appear as double precision floats.• 
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Int8Array - Arrays of 8 bit integers.• 
Int16Array - Arrays of 16 bit integers.• 
Int32Array - Arrays of 32 bit integers.• 
Float32Array - Arrays of single precision floats.• 
Float64Array - Arrays of double precision floats.• 
Enum - Arrays of strings, integer values and integer severities.• 
GenericPointer - void* pointer.• 

Note that hardware may have registers with smaller sizes, e.g. 16 bit registers. The standard interfaces can still be
used by setting the unused bits to 0.

For all of these interfaces a default implementation and a synchronous inplementation are provided. Lets use Int32
as an example.

asynInt32 - An interface with methods: read, write, getBounds, registerInterruptUser, and
cancelInterruptUser.

• 

asynInt32Base - An interface used by drivers that implement asynInt32. It also has an implementation
that:

registers the asynInt32 interface♦ 
has default methods for read, write, and getBounds. A null method in the interface passed to
initialize is replaced by a method implemented by asynInt32Base.

♦ 

implements registerInterruptUser and cancelInterruptUser. The caller should leave these methods
null because asynInt32Base always replaces them by it's implementation.

♦ 

Drivers that implement asynInt32 normally call asynInt32Base:initialize. It implements
registerInterruptUser and cancelInterruptUser. If the driver provides interrupt support it must:

Call pasynInt32Base->initialize♦ 
Call pasynManager->registerInterruptSource♦ 
Interact with asynManager to call the users that have registered with
asynInt32Base:registerInterruptUser. The driver calls users when there is new data available.

♦ 

asyn/testEpicsApp/src/int32Driver.c provides an example of how to provide support for interrupts.

• 

asynInt32SyncIO - A synchronous interface to asynInt32• 

addr - What does it mean for register based interfaces?

Low level register based drivers are normally multi-device. The meaning of addr is:

Int32 - The driver supports an array of Int32 values. addr selects an array element. For example a 16
channel ADC would support addr 0 through 15.

• 

Int8Array - Each addr is an array of Int8 values.• 
Int16Array - Each addr is an array of Int16 values.• 
Int32Array - Each addr is an array of Int32 values.• 
Float64 - The driver supports an array of Float64 values. addr selects an array element.• 
Float32Array - Each addr is an array of Float32 values.• 
Float64Array - Each addr is an array of Float64 values.• 
UInt32Digital - The driver supports an array of UInt32 values. addr selects an array element. For example
a 128 bit digital I/O module appears as an array of four UInt32 registers.

• 
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Example Drivers

Two examples of drivers that might implement and use the interfaces are:

Analog to Digital Convertor.

An example is a 16 channel ADC. The driver implements interfaces asynCommon and asynInt32. It uses
interface asynInt32Base. It can call asynManager:interruptStart and asynManager:interruptEnd to support
interrupts. It can use pasynUser->reason and addr to decide which callbacks to call.
asyn/testEpicsApp/int32Driver.c is a soft example of how to implement a driver that implements
asynInt32 and also asynFloat64.

• 

Digital I/O module

An example is a 64 bit combination digital input and digital output module. The driver implements
interfaces asynCommon and asynUInt32Digital. It uses interface asynUInt32DigitalBase. It can call
asynManager:interruptStart and asynManager:interruptEnd to support interrupts. It can use reason, mask,
and addr to decide which callbacks to call. asyn/testEpicsApp/uint32DigitalDriver.c is a soft example of a
driver that implements asynUInt32Digital.

• 

asynInt32

asynInt32 describes the methods implemented by drivers that use integers for communicating with a device.

typedef void (*interruptCallbackInt32)(void *userPvt, asynUser *pasynUser, 
                                       epicsInt32 data);
typedef struct asynInt32Interrupt {
    int addr;
    asynUser *pasynUser;
    interruptCallbackInt32 callback;
    void *userPvt;
} asynInt32Interrupt;
#define asynInt32Type "asynInt32"
typedef struct asynInt32 {
    asynStatus (*write)(void *drvPvt, asynUser *pasynUser, epicsInt32 value);
    asynStatus (*read)(void *drvPvt, asynUser *pasynUser, epicsInt32 *value);
    asynStatus (*getBounds)(void *drvPvt, asynUser *pasynUser,
                           epicsInt32 *low, epicsInt32 *high);
    asynStatus (*registerInterruptUser)(void *drvPvt,asynUser *pasynUser,
                           interruptCallbackInt32 callback, void *userPvt,
                           void **registrarPvt);
    asynStatus (*cancelInterruptUser)(void *drvPvt, asynUser *pasynUser,
                    void *registrarPvt);
} asynInt32;

/* asynInt32Base does the following:
   calls  registerInterface for asynInt32.
   Implements registerInterruptUser and cancelInterruptUser
   Provides default implementations of all methods.
   registerInterruptUser and cancelInterruptUser can be called
   directly rather than via queueRequest.
*/

#define asynInt32BaseType "asynInt32Base"
typedef struct asynInt32Base {
    asynStatus (*initialize)(const char *portName,
                            asynInterface *pint32Interface);
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} asynInt32Base;
epicsShareExtern asynInt32Base *pasynInt32Base;

asynInt32

write Write an integer value to the device.
read Read an integer value from the device.
getBounds Get the bounds. For example a 16 bit ADC might set low=-32768 and high = 32767.

registerInterruptUser Registers a callback that will be called whenever new data is available. Since it can be
called directly rather than via a queueRequest this method must not block.

cancelInterruptUser Cancels the callback. Since it can be called directly rather than via a queueRequest this
method must not block.

asynInt32Base is an interface and associated code that is used by drivers that implement interface asynInt32.
asynInt32Base provides code to handle registerInterruptUser/cancelInterruptUser. The driver must itself call the
callbacks via calls to asynManager:interruptStart and asynManager:interruptEnd.

asynInt32Base

initialize

After a driver calls registerPort it can call:

pasynInt32Base->initialize(...

Any null methods in the asynInterface are replaced by default implementations.

The default implementation of each method does the following:

asynInt32

write Reports an error "write is not supported" and returns asynError
read Reports an error "read is not supported" and returns asynError

getBounds Reports an error "getBounds is not supported" and returns
asynError

registerInterruptUser registers an interrupt callback.
cancelInterruptUser Cancels the callback

asynInt32SyncIO

asynInt32SyncIO describes a synchronous interface to asynInt32. The code that calls it must be willing to block.

#define asynInt32SyncIOType "asynInt32SyncIO"
typedef struct asynInt32SyncIO {
    asynStatus (*connect)(const char *port, int addr,
                          asynUser **ppasynUser, const char *drvInfo);
    asynStatus (*disconnect)(asynUser *pasynUser);
    asynStatus (*write)(asynUser *pasynUser, epicsInt32 value,double timeout);
    asynStatus (*read)(asynUser *pasynUser, epicsInt32 *pvalue,double timeout);
    asynStatus (*getBounds)(asynUser *pasynUser,
                    epicsInt32 *plow, epicsInt32 *phigh);
    asynStatus (*writeOnce)(const char *port, int addr,
                    epicsInt32 value,double timeout, const char *drvInfo);
    asynStatus (*readOnce)(const char *port, int addr,
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                    epicsInt32 *pvalue,double timeout, const char *drvInfo);
    asynStatus (*getBoundsOnce)(const char *port, int addr,
                    epicsInt32 *plow, epicsInt32 *phigh,const char *drvInfo);
} asynInt32SyncIO;
epicsShareExtern asynInt32SyncIO *pasynInt32SyncIO;

asynInt32SyncIO

connect Connects to a port and address, returns a pointer to an asynUser.
disconnect Disconnect. This frees all resources allocated by connect.
write Calls pasynInt32->write and waits for the operation to complete or time out.
read Calls pasynInt32->read and waits for the operation to complete or time out.
getBounds Calls pasynInt32->getBounds and waits for the operation to complete or time out.
writeOnce This does a connect, write, and disconnect.
readOnce This does a connect, read, and disconnect.
getBoundsOnce This does a connect, getBounds, and disconnect.

asynUInt32Digital

asynUInt32Digital describes the methods for communicating via bits of an Int32 register.

typedef enum {
    interruptOnZeroToOne, interruptOnOneToZero, interruptOnBoth
} interruptReason;

typedef void (*interruptCallbackUInt32Digital)(void *userPvt, 
                 asynUser *pasynUser, epicsUInt32 data);
typedef struct asynUInt32DigitalInterrupt {
    epicsUInt32 mask;
    int addr;
    asynUser *pasynUser;
    interruptCallbackUInt32Digital callback;
    void *userPvt;
} asynUInt32DigitalInterrupt;
#define asynUInt32DigitalType "asynUInt32Digital"
typedef struct asynUInt32Digital {
    asynStatus (*write)(void *drvPvt, asynUser *pasynUser,
         epicsUInt32 value, epicsUInt32 mask);
    asynStatus (*read)(void *drvPvt, asynUser *pasynUser,
        epicsUInt32 *value, epicsUInt32 mask);
    asynStatus (*setInterrupt)(void *drvPvt, asynUser *pasynUser,
        epicsUInt32 mask, interruptReason reason);
    asynStatus (*clearInterrupt)(void *drvPvt, asynUser *pasynUser,
        epicsUInt32 mask);
    asynStatus (*getInterrupt)(void *drvPvt, asynUser *pasynUser,
        epicsUInt32 *mask, interruptReason reason);
    asynStatus (*registerInterruptUser)(void *drvPvt, asynUser *pasynUser,
        interruptCallbackUInt32Digital callback,void *userPvt,epicsUInt32 mask,
        void **registrarPvt);
    asynStatus (*cancelInterruptUser)(void *drvPvt, asynUser *pasynUser,
                    void *registrarPvt);
} asynUInt32Digital;

/* asynUInt32DigitalBase does the following:
   calls  registerInterface for asynUInt32Digital.
   Implements registerInterruptUser and cancelInterruptUser
   Provides default implementations of all methods.
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   registerInterruptUser and cancelInterruptUser can be called
   directly rather than via queueRequest.
*/

#define asynUInt32DigitalBaseType "asynUInt32DigitalBase"
typedef struct asynUInt32DigitalBase {
    asynStatus (*initialize)(const char *portName,
                            asynInterface *pasynUInt32DigitalInterface);
} asynUInt32DigitalBase;
epicsShareExtern asynUInt32DigitalBase *pasynUInt32DigitalBase;

asynUInt32Digital

write Modify the bits specified by mask with the corresponding bits in value.
read Read the bits specified by mask into value. The other bits of value will be set to 0.
setInterrupt Set the bits specified by mask to interrupt for reason.
clearInterrupt Clear the interrupt bits specified by mask.
getInterrupt Set each bit of mask that is enabled for reason.

registerInterruptUser
Register a callback that will be called whenever the driver detects a change in any of the
bits specified by mask. Since it can be called directly rather than via a queueRequest this
method must not block.

cancelInterruptUser Cancels the registered callback. Since it can be called directly rather than via a
queueRequest this method must not block.

asynUInt32DigitalBase is an interface and associated code that is used by drivers that implement interface
asynUInt32Digital. asynUInt32DigitalBase provides code to implement registerInterruptUser and
cancelInterruptUser.

asynUInt32DigitalBase

initialize

After a driver calls registerPort it can call:

pasynUInt32DigitalBase->initialize(...

Any null methods in the asynInterface are replaced by default implementations.
The default implementation of each method does the following:

asynUInt32Digital

write Reports an error "write is not supported" and returns asynError
read Reports an error "read is not supported" and returns asynError
setInterrupt Reports an error "setInterrupt is not supported" and returns asynError
clearInterrupt Reports an error "clearInterrupt is not supported" and returns asynError
getInterrupt Reports an error "getInterrupt is not supported" and returns asynError

registerInterruptUser registers the interrupt user. The low level driver must call the registered callbacks via calls
to asynManager:interruptStart and asynManager:interruptEnd.

cancelInterruptUser Cancels the callback
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asynUInt32DigitalSyncIO

asynUInt32DigitalSyncIO describes a synchronous interrace to asynUInt32Digital. The code that calls it must be
willing to block.

#define asynUInt32DigitalSyncIOType "asynUInt32DigitalSyncIO"
typedef struct asynUInt32DigitalSyncIO {
    asynStatus (*connect)(const char *port, int addr,
                       asynUser **ppasynUser, const char *drvInfo);
    asynStatus (*disconnect)(asynUser *pasynUser);
    asynStatus (*write)(asynUser *pasynUser,
                       epicsUInt32 value,epicsUInt32 mask,double timeout);
    asynStatus (*read)(asynUser *pasynUser,
                       epicsUInt32 *pvalue,epicsUInt32 mask,double timeout);
    asynStatus (*setInterrupt)(asynUser *pasynUser,
                       epicsUInt32 mask, interruptReason reason,double timeout);
    asynStatus (*clearInterrupt)(asynUser *pasynUser,
                       epicsUInt32 mask,double timeout);
    asynStatus (*getInterrupt)(asynUser *pasynUser,
                       epicsUInt32 *mask, interruptReason reason,double timeout);
    asynStatus (*writeOnce)(const char *port, int addr,
                       epicsUInt32 value,epicsUInt32 mask,double timeout,
                       const char *drvInfo);
    asynStatus (*readOnce)(const char *port, int addr,
                       epicsUInt32 *pvalue,epicsUInt32 mask,double timeout,
                       const char *drvInfo);
    asynStatus (*setInterruptOnce)(const char *port, int addr,
                       epicsUInt32 mask, interruptReason reason,double timeout,
                       const char *drvInfo);
    asynStatus (*clearInterruptOnce)(const char *port, int addr,
                       epicsUInt32 mask,double timeout,const char *drvInfo);
    asynStatus (*getInterruptOnce)(const char *port, int addr,
                       epicsUInt32 *mask, interruptReason reason,double timeout,
                       const char *drvInfo);
} asynUInt32DigitalSyncIO;
epicsShareExtern asynUInt32DigitalSyncIO *pasynUInt32DigitalSyncIO;

asynUInt32DigitalSyncIO

connect Connects to a port and address, returns a pointer to an asynUser structure.
disconnect Disconnect. This frees all resources allocated by connect.

write Calls pasynUInt32Digital->write and waits for the operation to complete or time
out.

read Calls pasynUInt32Digital->read and waits for the operation to complete or time
out.

setInterrupt Calls pasynUInt32Digital->setInterrupt and waits for the operation to complete
or time out.

clearInterrupt Calls pasynUInt32Digital->clearInterrupt and waits for the operation to complete
or time out.

getInterrupt Calls pasynUInt32Digital->getInterrupt and waits for the operation to complete
or time out.

writeOnce,...,getInterruptOnce Does a connect, (write,...,getInterrupt), and disconnect.
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asynFloat64

asynFloat64 describes the methods for communicating via IEEE double precision float values.

typedef void (*interruptCallbackFloat64)(void *userPvt, asynUser *pasynUser,
            epicsFloat64 data);
typedef struct asynFloat64Interrupt {
    asynUser *pasynUser;
    int addr;
    interruptCallbackFloat64 callback;
    void *userPvt;
} asynFloat64Interrupt;
#define asynFloat64Type "asynFloat64"
typedef struct asynFloat64 {
    asynStatus (*write)(void *drvPvt, asynUser *pasynUser, epicsFloat64 value);
    asynStatus (*read)(void *drvPvt, asynUser *pasynUser, epicsFloat64 *value);
    asynStatus (*registerInterruptUser)(void *drvPvt, asynUser *pasynUser,
        interruptCallbackFloat64 callback, void *userPvt,void **registrarPvt);
    asynStatus (*cancelInterruptUser)(void *drvPvt, asynUser *pasynUser,
                    void *registrarPvt);
} asynFloat64;

/* asynFloat64Base does the following:
   calls  registerInterface for asynFloat64.
   Implements registerInterruptUser and cancelInterruptUser
   Provides default implementations of all methods.
   registerInterruptUser and cancelInterruptUser can be called
   directly rather than via queueRequest.
*/

#define asynFloat64BaseType "asynFloat64Base"
typedef struct asynFloat64Base {
    asynStatus (*initialize)(const char *portName,
                            asynInterface *pasynFloat64Interface);
} asynFloat64Base;
epicsShareExtern asynFloat64Base *pasynFloat64Base;

asynFloat64

write Write a value.
read Read a value.

registerInterruptUser Register a callback that is called whenever new data is available. Since it can be called
directly rather than via a queueRequest this method must not block.

cancelInterruptUser Cancel the callback. Since it can be called directly rather than via a queueRequest this
method must not block.

asynFloat64Base

initialize

After a driver calls registerPort it can call:

pasynFloat64Base->initialize(...

Any null methods in the asynInterface are replaced by default implementations.
The default implementation of each method does the following:

asynFloat64
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write Reports an error "write is not supported" and returns asynError
read Reports an error "read is not supported" and returns asynError

registerInterruptUser registers the interrupt user. The low level driver must call the registered callbacks via calls
to asynManager:interruptStart and asynManager:interruptEnd.

cancelInterruptUser Cancels the callback

asynFloat64SyncIO

asynFloat64SyncIO describes a synchronous interrace to asynFloat64. The code that calls it must be willing to
block.

#define asynFloat64SyncIOType "asynFloat64SyncIO"
typedef struct asynFloat64SyncIO {
    asynStatus (*connect)(const char *port, int addr,
                       asynUser **ppasynUser, const char *drvInfo);
    asynStatus (*disconnect)(asynUser *pasynUser);
    asynStatus (*write)(asynUser *pasynUser,epicsFloat64 value,double timeout);
    asynStatus (*read)(asynUser *pasynUser,epicsFloat64 *pvalue,double timeout);
    asynStatus (*writeOnce)(const char *port, int addr,
                       epicsFloat64 value,double timeout,const char *drvInfo);
    asynStatus (*readOnce)(const char *port, int addr,
                       epicsFloat64 *pvalue,double timeout,const char *drvInfo);
} asynFloat64SyncIO;
epicsShareExtern asynFloat64SyncIO *pasynFloat64SyncIO;

asynFloat64SyncIO

connect Connects to a port and address, returns a pointer to an asynUser structure.
disconnect Disconnect. This frees all resources allocated by connect.
write Calls pasynFloat64->write and waits for the operation to complete or time out.
read Calls pasynFloat64->read and waits for the operation to complete or time out.
writeOnce This does a connect, write, and disconnect.
readOnce This does a connect, read, and disconnect.

asynXXXArray (where XXX is Int8, Int16, Int32, Float32 or Float64)

asynXXXArray describes the methods for communicating via 8, 16, or 32-bit integers, or 32 or 64-bit IEEE float
values.

typedef void (*interruptCallbackXXXArray)(
              void *userPvt, asynUser *pasynUser,
              epicsXXX *data, size_t nelements);
typedef struct asynXXXArrayInterrupt {
    asynUser *pasynUser;
    int addr;
    interruptCallbackXXXArray callback;
    void *userPvt;
} asynXXXArrayInterrupt;
#define asynXXXArrayType "asynXXXArray"
typedef struct asynXXXArray {
    asynStatus (*write)(void *drvPvt, asynUser *pasynUser,
                       epicsXXX *value, size_t nelements);
    asynStatus (*read)(void *drvPvt, asynUser *pasynUser,
                       epicsXXX *value, size_t nelements, size_t *nIn);
    asynStatus (*registerInterruptUser)(void *drvPvt, asynUser *pasynUser,
         interruptCallbackXXXArray callback,
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         void *userPvt,void **registrarPvt);
    asynStatus (*cancelInterruptUser)(void *drvPvt, asynUser *pasynUser,
                    void *registrarPvt);
} asynXXXArray;

/* asynXXXArrayBase does the following:
   calls  registerInterface for asynXXXArray.
   Implements registerInterruptUser and cancelInterruptUser
   Provides default implementations of all methods.
   registerInterruptUser and cancelInterruptUser can be called
   directly rather than via queueRequest.
*/

#define asynXXXArrayBaseType "asynXXXArrayBase"
typedef struct asynXXXArrayBase {
    asynStatus (*initialize)(const char *portName,
                            asynInterface *pXXXArrayInterface);
} asynXXXArrayBase;
epicsShareExtern asynXXXArrayBase *pasynXXXArrayBase;

asynXXXArray

write Write an array of values.
read Read an array of values.
registerInterruptUser Register a callback that is called whenever new data is available.
cancelInterruptUser Cancel the callback

asynXXXArrayBase

initialize

After a driver calls registerPort it can call:

pasynXXXArrayBase->initialize(...

Any null methods in the asynInterface are replaced by default implementations.

The default implementation of each method does the following:

asynXXXArrayBase

write Reports an error "write is not supported" and returns asynError
read Reports an error "read is not supported" and returns asynError
registerInterruptUser Registers an interrupt callback.
cancelInterruptUser Cancels the callback

asynXXXArraySyncIO

asynXXXArraySyncIO describes a synchronous interface to asynXXXArray. The code that calls it must be
willing to block.

#define asynXXXArraySyncIOType "asynXXXArraySyncIO"
typedef struct asynXXXArraySyncIO {
    asynStatus (*connect)(const char *port, int addr,
                          asynUser **ppasynUser, const char *drvInfo);
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    asynStatus (*disconnect)(asynUser *pasynUser);
    asynStatus (*write)(asynUser *pasynUser, epicsXXX *pvalue,size_t nelem,double timeout);
    asynStatus (*read)(asynUser *pasynUser, epicsXXX *pvalue,size_t nelem,size_t *nIn,double timeout);
    asynStatus (*writeOnce)(const char *port, int addr,
                    epicsXXX *pvalue,size_t nelem,double timeout, const char *drvInfo);
    asynStatus (*readOnce)(const char *port, int addr,
                    epicsXXX *pvalue,size_t nelem,size_t *nIn,double timeout, const char *drvInfo);
} asynXXXArraySyncIO;
epicsShareExtern asynXXXArraySyncIO *pasynXXXArraySyncIO;

asynXXXArraySyncIO

connect Connects to a port and address, returns a pointer to an asynUser.
disconnect Disconnect. This frees all resources allocated by connect.
write Calls pasynXXXArray->write and waits for the operation to complete or time out.
read Calls pasynXXXArray->read and waits for the operation to complete or time out.
writeOnce This does a connect, write, and disconnect.
readOnce This does a connect, read, and disconnect.
getBoundsOnce This does a connect, getBounds, and disconnect.

asynEnum

asynEnum describes the methods implemented by drivers to define the enum strings, values, and severities for a
device.

This interface is typically used by drivers to set the enum strings and values for EPICS bi, bo, mbbi, and mbbo
records. The strings[] are used to define the ZNAM and ONAM fields in bi and bo records, and the ZRST, ONST,
...FFST fields in mbbi and mbbo records. The integer values[] are ignored for bi and bo records, since these
always have the values of 0 and 1 corresponding to the ZNAM and ONAM states. The integer values[] are used to
assign the ZRVL, ONVL, ... FFVL fields for mbbi and mbbo records. The integer severities[] are used to set the
ZSV and OSV fields of bi and bo records, and the ZRSV, ONSV, ... FFSV fields of mbbi and mbbo records. The
nelements parameter in the write() and read() functions is used by the client to specify the dimensions of the
strings[], values[], and severities[] arrays. The driver must not access these arrays beyond element nElements-1.
The nIn parameter in the read() is used by the driver to set the actual number of value enum strings, values, and
severities. There is no size limitation on nElements imposed by the asynEnum interface. However, the bi and bo
records limit nElements to 2, and mbbi and mbbo records limit nElements to 16. There is no size limitation on the
strings imposed by the asynEnum interface. However, the string fields in the bi, bo, mbbo, and mbbi records are
currently limited to 26 characters.

Clients must ensure that the char* pointers passed in strings[] in the read() function are either set to NULL or
have been allocated by malloc(). The driver read() function must first call free() if a string pointer contains a
non-NULL value. The driver must then allocate the strings using malloc() before copying the current enum string
values to them.

typedef void (*interruptCallbackEnum)
              void *userPvt, asynUser *pasynUser,
              char *strings[], int values[], int severities[], size_t nelements);
typedef struct asynEnumInterrupt {
    asynUser *pasynUser;
    int addr;
    interruptCallbackEnum callback;
    void *userPvt;
} asynEnumInterrupt;
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#define asynEnumType "asynEnum"
typedef struct asynEnum {
    asynStatus (*write)(void *drvPvt, asynUser *pasynUser,
                       char *strings[], int values[], int severities[], size_t nelements);
    asynStatus (*read)(void *drvPvt, asynUser *pasynUser,
                       char *strings[], int values[], int severities[], size_t nelements, size_t *nIn);
    asynStatus (*registerInterruptUser)(void *drvPvt, asynUser *pasynUser,
             interruptCallbackEnum callback, void *userPvt,
             void **registrarPvt);
    asynStatus (*cancelInterruptUser)(void *drvPvt, asynUser *pasynUser,
             void *registrarPvt);
} asynEnum;

/* asynEnumBase does the following:
   calls registerInterface for asynEnum.
   Implements registerInterruptUser and cancelInterruptUser
   Provides default implementations of all methods.
   registerInterruptUser and cancelInterruptUser can be called
   directly rather than via queueRequest.
*/

#define asynEnumBaseType "asynEnumBase"
typedef struct asynEnumBase {
    asynStatus (*initialize)(const char *portName,
                            asynInterface *pEnumInterface);
} asynEnumBase;
epicsShareExtern asynEnumBase *pasynEnumBase;

asynEnum

write Writes the enum strings, enum values and enum severities to the driver.
read Reads the enum strings, enum values and enum severities to the driver.

registerInterruptUser
Registers a callback that will be called whenever there are new enum strings, values and
severities. Since it can be called directly rather than via a queueRequest this method must
not block.

cancelInterruptUser Cancels the callback. Since it can be called directly rather than via a queueRequest this
method must not block.

asynEnumBase is an interface and associated code that is used by drivers that implement interface asynEnum.
asynEnumBase provides code to handle registerInterruptUser/cancelInterruptUser. The driver must itself call the
callbacks via calls to asynManager:interruptStart and asynManager:interruptEnd.

asynEnumBase

initialize

After a driver calls registerPort it can call:

pasynEnumBase->initialize(...

Any null methods in the asynInterface are replaced by default implementations.

The default implementation of each method does the following:

asynEnum
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write Reports an error "write is not supported" and returns asynError
read Reports an error "read is not supported" and returns asynError
registerInterruptUser registers an interrupt callback.
cancelInterruptUser Cancels the callback

asynEnumSyncIO

asynEnumSyncIO describes a synchronous interface to asynEnum. The code that calls it must be willing to block.

#define asynEnumSyncIOType "asynEnumSyncIO"
typedef struct asynEnumSyncIO {
    asynStatus (*connect)(const char *port, int addr, 
                          asynUser **ppasynUser, const char *drvInfo);
    asynStatus (*disconnect)(asynUser *pasynUser);
    asynStatus (*write)(asynUser *pasynUser, char *strings[], int values[], int severities[], 
                       size_t nElements, double timeout);
    asynStatus (*read)(asynUser *pasynUser, char *string[], int values[],  int severities[], 
                       size_t nElements, size_t *nIn, double timeout);
    asynStatus (*writeOnce)(const char *port, int addr, char *strings[], int values[],  int severities[], 
                           size_t nElements, double timeout, const char *drvInfo);
    asynStatus (*readOnce)(const char *port, int addr, char *strings[], int values[],  int severities[], 
                           size_t nElements, size_t *nIn, double timeout, const char *drvInfo);
} asynEnumSyncIO;
epicsShareExtern asynEnumSyncIO *pasynEnumSyncIO;

asynEnumSyncIO

connect Connects to a port and address, returns a pointer to an asynUser.
disconnect Disconnect. This frees all resources allocated by connect.
write Calls pasynEnum->write and waits for the operation to complete or time out.
read Calls pasynEnum->read and waits for the operation to complete or time out.
writeOnce This does a connect, write, and disconnect.
readOnce This does a connect, read, and disconnect.
getBoundsOnce This does a connect, getBounds, and disconnect.

asynGenericPointer

asynGenericPointer describes the methods for communicating via void* pointers. asyn clients and port drivers
must agree on the type of object that is being pointed to!

typedef void (*interruptCallbackGenericPointer)(void *userPvt, asynUser *pasynUser,
            void *pdata);
typedef struct asynGenericPointerInterrupt {
    asynUser *pasynUser;
    int addr;
    interruptCallbackGenericPointer callback;
    void *userPvt;
} asynGenericPointerInterrupt;
#define asynGenericPointerType "asynGenericPointer"
typedef struct asynGenericPointer {
    asynStatus (*write)(void *drvPvt, asynUser *pasynUser, void *pvalue);
    asynStatus (*read)(void *drvPvt, asynUser *pasynUser, void *pvalue);
    asynStatus (*registerInterruptUser)(void *drvPvt, asynUser *pasynUser,
        interruptCallbackGenericPointer callback, void *userPvt,void **registrarPvt);
    asynStatus (*cancelInterruptUser)(void *drvPvt, asynUser *pasynUser,
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                    void *registrarPvt);
} asynGenericPointer;

/* asynGenericPointerBase does the following:
   calls  registerInterface for asynGenericPointer.
   Implements registerInterruptUser and cancelInterruptUser
   Provides default implementations of all methods.
   registerInterruptUser and cancelInterruptUser can be called
   directly rather than via queueRequest.
*/

#define asynGenericPointerBaseType "asynGenericPointerBase"
typedef struct asynGenericPointerBase {
    asynStatus (*initialize)(const char *portName,
                            asynInterface *pasynGenericPointerInterface);
} asynGenericPointerBase;
epicsShareExtern asynGenericPointerBase *pasynGenericPointerBase;

asynGenericPointer

write Write a value.
read Read a value.

registerInterruptUser Register a callback that is called whenever new data is available. Since it can be called
directly rather than via a queueRequest this method must not block.

cancelInterruptUser Cancel the callback. Since it can be called directly rather than via a queueRequest this
method must not block.

asynGenericPointerBase

initialize

After a driver calls registerPort it can call:

pasynGenericPointerBase->initialize(...

Any null methods in the asynInterface are replaced by default implementations.
The default implementation of each method does the following:

asynGenericPointer

write Reports an error "write is not supported" and returns asynError
read Reports an error "read is not supported" and returns asynError

registerInterruptUser registers the interrupt user. The low level driver must call the registered callbacks via calls
to asynManager:interruptStart and asynManager:interruptEnd.

cancelInterruptUser Cancels the callback

asynGenericPointerSyncIO

asynGenericPointerSyncIO describes a synchronous interrace to asynGenericPointer. The code that calls it must
be willing to block.

#define asynGenericPointerSyncIOType "asynGenericPointerSyncIO"
typedef struct asynGenericPointerSyncIO {
    asynStatus (*connect)(const char *port, int addr,
                       asynUser **ppasynUser, const char *drvInfo);
    asynStatus (*disconnect)(asynUser *pasynUser);
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    asynStatus (*write)(asynUser *pasynUser,void *pvalue,double timeout);
    asynStatus (*read)(asynUser *pasynUser,void *pvalue,double timeout);
    asynStatus (*writeRead)(asynUser *pasynUser,void *pwrite_buffer,void *pread_buffer,double timeout);
    asynStatus (*writeOnce)(const char *port, int addr,
                       void *pvalue,double timeout,const char *drvInfo);
    asynStatus (*readOnce)(const char *port, int addr,
                       void *pvalue,double timeout,const char *drvInfo);
    asynStatus (*writeReadOnce)(const char *port, int addr,
                       void *pwrite_buffer,void *pread_buffer,double timeout,const char *drvInfo);
} asynGenericPointerSyncIO;
epicsShareExtern asynGenericPointerSyncIO *pasynGenericPointerSyncIO;

asynGenericPointerSyncIO

connect Connects to a port and address, returns a pointer to an asynUser structure.
disconnect Disconnect. This frees all resources allocated by connect.
write Calls pasynGenericPointer->write and waits for the operation to complete or time out.
read Calls pasynGenericPointer->read and waits for the operation to complete or time out.

writeRead Calls pasynGenericPointer->write, then pasynGenericPointer->read. Waits for the operations to
complete or time out.

writeOnce This does a connect, write, and disconnect.
readOnce This does a connect, read, and disconnect.
writeReadOnce This does a connect, writeRead, and disconnect.

asynStandardInterfacesBase

asynStandardInterfacesBase is an interface designed as a convenience to minimize the amount of code that must
be written in the initialization routine of a port driver that uses the standard asyn message-based or register-based
interfaces that are described above. Without asynStandardInterfacesBase a port driver needs to call
asynRegisterInterface(), and possibly asynRegisterInterruptSource() for each interface that it supports, and handle
any errors that may occur in these calls. It also needs to explicitly include several fields in its drvPvt structure for
each interface. asynStandardInterfacesBase provides an interface that allows port drivers to include a single
structure in its drvPvt structure, and define values in this structure. It then calls a single function to register all
interfaces that it supports, and to register itself as an interrupt source on one or more of those interfaces. This can
reduce the number of lines of code in the driver initialization routine by a factor of four or more.

asynStandardInterfaces structure

The following is the definition of the asynStandardInterfaces structure. Drivers will normally have a structure of
this type contained in their drvPvt structure. If this structure is initialized to all zeros when drvPvt is created, then
all that is necessary is to fill in the addresses of each of each of the supported interfaces (in that interface's
.pinterface field), and to set the CanInterrupt flag to 1 for those interfaces that are interrupt sources.

typedef struct asynStandardInterfaces {
    asynInterface common;

    asynInterface drvUser;

    asynInterface option;

    asynInterface octet;
    int octetProcessEosIn;
    int octetProcessEosOut;
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    int octetInterruptProcess;
    int octetCanInterrupt;
    void *octetInterruptPvt;

    asynInterface uInt32Digital;
    int uInt32DigitalCanInterrupt;
    void *uInt32DigitalInterruptPvt;

    asynInterface int32;
    int int32CanInterrupt;
    void *int32InterruptPvt;

    asynInterface float64;
    int float64CanInterrupt;
    void *float64InterruptPvt;

    asynInterface int8Array;
    int int8ArrayCanInterrupt;
    void *int8ArrayInterruptPvt;

    asynInterface int16Array;
    int int16ArrayCanInterrupt;
    void *int16ArrayInterruptPvt;

    asynInterface int32Array;
    int int32ArrayCanInterrupt;
    void *int32ArrayInterruptPvt;

    asynInterface float32Array;
    int float32ArrayCanInterrupt;
    void *float32ArrayInterruptPvt;

    asynInterface float64Array;
    int float64ArrayCanInterrupt;
    void *float64ArrayInterruptPvt;

    asynInterface genericPointer;
    int genericPointerCanInterrupt;
    void *genericPointerInterruptPvt;

    asynInterface Enum;
    int enumCanInterrupt;
    void *enumInterruptPvt;

} asynStandardInterfaces;

asynStandardInterfacesBase interface

The following is the definition of the asynStandardInterfacesBase interface.

typedef struct asynStandardInterfacesBase {
    asynStatus (*initialize)(const char *portName, asynStandardInterfaces *pInterfaces, 
                             asynUser *pasynUser, void *pPvt);
} asynStandardInterfacesBase;

epicsShareExtern asynStandardInterfacesBase *pasynStandardInterfacesBase;

asynStandardInterfacesBase has a single method, initialize(), which calls registerInterface or Base->initialize for
each interface which has a non-NULL value in its .pinterface field. It also calls registerInterruptSource for
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interfaces that are defined and that have the CanInterrupt flag set to 1. The pasynUser argument to the initialize()
method is used only to provide a place for the method to return an error message (in pasynUser->errorMessage)
so the invoking routine may reuse or free the asynUser structure when the method has returned.

The following is an example of the code required in a port driver that uses the asynStandardInterfacesBase
interface.

#include <asynStandardInterfaces.h>
...
typedef struct drvADPvt {
...
    /* The asyn interfaces this driver implements */
    asynStandardInterfaces asynStdInterfaces;

    /* asynUser connected to ourselves for asynTrace */
    asynUser *pasynUser;
...
} drvADPvt;
...
/* Structures with function pointers for each of the asyn interfaces */
static asynCommon ifaceCommon = {
    report,
    connect,
    disconnect
};

static asynInt32 ifaceInt32 = {
    writeInt32,
    readInt32,
    getBounds
};

static asynFloat64 ifaceFloat64 = {
    writeFloat64,
    readFloat64
};

static asynOctet ifaceOctet = {
    writeOctet,
    NULL,
    readOctet,
};

static asynDrvUser ifaceDrvUser = {
    drvUserCreate,
    drvUserGetType,
    drvUserDestroy
};

static asynGenericPointer ifaceGenericPointer = {
    writeADImage,
    readADImage
};
...

int simDetectorConfig(const char *portName, int maxSizeX, int maxSizeY, int dataType)

{
    drvADPvt *pPvt;
    int status = asynSuccess;
    char *functionName = "simDetectorConfig";
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    asynStandardInterfaces *pInterfaces;

    pPvt = callocMustSucceed(1, sizeof(*pPvt), functionName);
    pPvt->portName = epicsStrDup(portName);

    status = pasynManager->registerPort(portName,
                                        ASYN_MULTIDEVICE | ASYN_CANBLOCK,
                                        1,  /*  autoconnect */
                                        0,  /* medium priority */
                                        0); /* default stack size */
    if (status != asynSuccess) {
        printf("%s ERROR: Can't register port\n", functionName);
        return(asynError);
    }

    /* Create asynUser for debugging */
    pPvt->pasynUser = pasynManager->createAsynUser(0, 0);

    pInterfaces = &pPvt->asynStdInterfaces;

    /* Initialize interface pointers */
    pInterfaces->common.pinterface         = (void *)&ifaceCommon;
    pInterfaces->drvUser.pinterface        = (void *)&ifaceDrvUser;
    pInterfaces->octet.pinterface          = (void *)&ifaceOctet;
    pInterfaces->int32.pinterface          = (void *)&ifaceInt32;
    pInterfaces->float64.pinterface        = (void *)&ifaceFloat64;
    pInterfaces->genericPointer.pinterface = (void *)&ifaceGenericPointer;

    /* Define which interfaces can generate interrupts */
    pInterfaces->octetCanInterrupt          = 1;
    pInterfaces->int32CanInterrupt          = 1;
    pInterfaces->float64CanInterrupt        = 1;
    pInterfaces->genericPointerCanInterrupt = 1;

    status = pasynStandardInterfacesBase->initialize(portName, pInterfaces,
                                                     pPvt->pasynUser, pPvt);
    if (status != asynSuccess) {
        printf("%s ERROR: Can't register interfaces: %s.\n",
               functionName, pPvt->pasynUser->errorMessage);
        return(asynError);
    }
...
}

Standard Interpose Interfaces

asynInterposeEos

This can be used to simulate EOS processing for asynOctet if the port driver doesn't provide EOS support. If an
EOS is specified it looks for the eos on each read. It is started by the shell command:

    asynInterposeEosConfig port addr processEosIn processEosOut

where

port is the name of the port.• 
addr is the address• 
processEosIn (0,1) means (do not, do) implement eosIn commands.• 
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processEosOut (0,1) means (do not, do) implement eosOut commands.• 

This command should appear immediately after the command that initializes a port Some drivers provide
configuration options to call this automatically.

asynInterposeFlush

This can be used to simulate flush processing for asynOctet if the port driver doesn't provide support for flush. It
just reads and discards characters until no more characters arive before timeout seconds have occured. It is started
by the shell command:

    asynInterposeFlushConfig port addr timeout

where

port is the name of the port.• 
addr is the address• 
timeout is the time to wait for more characters• 

this command should appear immediately after the command that initializes a port

Generic Device Support for EPICS records

Generic device support is provided for standard EPICS records. This support should be usable for a large class of
low level register based drivers. For complicated devices other support is required. This release provides the
following:

devAsynInt32 - support for drivers that implement interface asynInt32• 
devAsynInt32TimeSeries - waveform record support for drivers that implement callbacks on interface
asynInt32

• 

devAsynInt8Array - support for drivers that implement interface asynInt8Array• 
devAsynInt16Array - support for drivers that implement interface asynInt16Array• 
devAsynInt32Array - support for drivers that implement interface asynInt32Array• 
devAsynUInt32Digital - support for drivers that implement interface asynUInt32Digital• 
devAsynFloat64 - support for drivers that implement interface asynFloat64• 
devAsynFloat64TimeSeries - waveform record support for drivers that implement callbacks on interface
asynFloat64

• 

devAsynFloat32Array - support for drivers that implement interface asynFloat32Array• 
devAsynFloat64Array - support for drivers that implement interface asynFloat64Array• 
devAsynOctet - support for drivers that implement interface asynOctet• 
devEpics - This is just a single file devEpics.dbd that includes the dbd files for the above support.• 
asynEpicsUtils.c - This provides utility functions. parseLink(), parseLinkMask() and parseLinkFree()
parse record the record INP and OUT links described below. asynStatusToEpicsAlarm() converts
asynStatus enum values to EPICS record STAT and SEVR values setting record alarms.

• 

The support uses the following conventions for DTYP and INP. OUT fields are the same as INP.

    field(DTYP,"asynXXX")
    field(INP,"@asyn(portName,addr,timeout)drvParams")
     or
    field(INP,"@asynMask(portName,addr,mask,timeout)drvParams")
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where

XXX - The name of the type of interface supported.• 
portName - The name of the port.• 
addr - The address. If addr is not specified the default is 0.• 
mask - This is for devAsynUInt32Digital. It is also used by devAsynInt32 to specify the number of bits of
the hardware device for drivers that do not support getBounds().

• 

timeout - The timeout value for asynUser.timeout. If not specified the default is 1.0.• 
drvParams - This is passed to the low level driver via the asynDrvUser interface. It is optional.• 

For example:

    field(DTYP,"asynInt32")
    field(INP,"@asyn(portA,0,.1)thisIsForDriver")

asynManager interrupts and EPICS device support

All of the device support files can call registerInterruptUser for input records. The callback is used in one of two
ways:

Input Records except Average and TimeSeries

It is used to support SCAN = "I/O Intr".

• 

Input records that are averaged, i.e. asynInt32Average or asynFloat64Average.

These records are normally scanned periodically. The registerInterruptUser callback is used to calculate
an average value between record processes. If the record is processed before new data have arrived
(numAverage==0) the record is set to UDF/INVALID, UDF is set to TRUE, and the value is left
unchanged.

• 

Input records that are waveform time series, i.e. asynInt32TimeSeries or asynFloat64TimeSeries.

These records are normally scanned periodically. The registerInterruptUser callback is used to append
values to the time series.

• 

Initial values of output records

The device support for output records on register based interfaces (bo, mbbo, ao, longout) does an initial read() of
the value from the driver in init_record. If this read() returns asynSuccess then the record value is set to the value
returned from read(). If read() returns anything other than asynSuccess then the record value is not modified. This
mechanism supports "bumpless reboots" where the initial value of output records will match the current value of
the hardware when the IOC starts. Drivers should only return asynSuccess from the read() function if the value is
known to be valid. Note that this value read from the device will replace the value in the database when iocInit
begins. However, the value read from the device may in turn be replaced by any value from save/restore, because
the auto restore happens later in iocInit.

Beginning in R4-30 devAsynOctet was changed to also support the initial readback for stringout and waveform
output records. The initial readback is only done if the record in the database contains the following line:
info(asyn:INITIAL_READBACK, "1")

.
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Enum values for bi, bo, mbbi, and mbbo records

Beginning in asyn R4-19 support was added for asyn port drivers to control the values of the enum strings, enum
values and enum severities in bi, bo, mbbi, and mbbo records. This is implemented in the asynInt32 and
asynUInt32Digital device support as follows:

In the device support init_record function the device support attempts to find the asynEnum interface in
the driver. If it is found then the driver calls pasynEnumSyncIO->read() to read the current values of the
enums from the driver. If the read() returns asynSuccess then the enum fields are set to the values
returned by the driver. If the asynEnum interface is not supported, or if read() returns anything except
asynSuccess then the enum fields are not modified.

• 

Device support registers for callbacks on the asynEnum interface. Drivers can make callbacks to
dynamically change the values of enums at run-time. For example, changing the gain of an ADC might
change the allowed choices for the speed, etc. Device support calls db_post_events(pr, &pr->val,
DBE_PROPERTY) when the enum fields change. This notifies clients that the enum values have
changed. Older clients like medm and edm will not change the enum widgets until the window is closed
and reopened, but newer clients like CSS should dynamically change the enum widgets.

• 

Callback updates for output records

Beginning in asyn R4-26 support was added for updating output records from driver interrupt callbacks. This
feature allows output records to reflect changes in the underlying hardware that are caused by manual front-panel
operation, changes caused by another output record, etc.

By default output records do not update when a driver does interrupt callbacks. However, if the following info tag
is added for a record in the database file then callbacks will be enabled and the output record will be updated
whenever the driver does a callback for that value.
info(asyn:READBACK, "1")

If the value of the info tag is 0 or if the info tag is not present then updates of output records on interrupt callbacks
are disabled.

Buffering of driver callbacks

It is possible for the time between driver callbacks to be less than the time for record processing. asyn device
support provides a ring-buffer (FIFO) mechanism to buffer values so that the record will process all callback
values from a short burst of callbacks. For all records except stringin, stringout, and waveform records the default
buffer size is 10 values. For stringin, stringout, and waveform records the default buffer size is 0, i.e. there is no
buffering. For all record types the size of the buffer can be controlled by the following info tag for a record in the
database file:
info(asyn:FIFO, "20")

In this example the buffer size was set to 20. Ring buffer support was added in asyn R4-10 for all records except
stringin, stringout, and waveform. Waveform record support for numeric arrays was added in asyn R4-25.
asynOctet support for stringin, stringout, and waveform records was added in asyn R4-26.

Time stamps

Beginning in asyn R4-20 support was added for asyn port drivers to set the TIME field of input records. This is
done by setting the TSE field of the record to "-2" and setting the desired value into the timestamp field of the
pasynUser structure referred to in the device read method or interrupt callback.
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Beginning in asyn R4-22 the timestamp support functions were added to asynManager to update, get and set the
most recent timestamp for the port in asynManager. Support was also added for user-supplied timestamp source
functions. Timestamp support was also added to asynPortDriver for the base-class read functions and callback
functions.

asynInt32 device support

The following support is available:

device(ai,INST_IO,asynAiInt32,"asynInt32")
device(ai,INST_IO,asynAiInt32Average,"asynInt32Average")
device(ao,INST_IO,asynAoInt32,"asynInt32")
device(bi,INST_IO,asynBiInt32,"asynInt32")
device(bo,INST_IO,asynBoInt32,"asynInt32")
device(mbbi,INST_IO,asynMbbiInt32,"asynInt32")
device(mbbo,INST_IO,asynMbboInt32,"asynInt32")
device(longin,INST_IO,asynLiInt32,"asynInt32")
device(longout,INST_IO,asynLoInt32,"asynInt32")

devAsynInt32.c provides EPICS device support for drivers that implement interface asynInt32.

For ai and ao records either of the following specifications for the INP and OUT fields can be used:

    field(INP,"@asyn(portName,addr,timeout) drvParams")
     or
    field(INP,"@asynMask(portName,addr,nbits,timeout) drvParams")

The asynMask format allows device support to work with drivers that cannot return meaningful values from
getBounds() because they do not know the range of the device. This is true, for example, of Modbus ADCs. The
nbits parameter is defined as follows:

nbits > 0  Device is unipolar with a range from 0 to 2^nbits-1.  Values will be masked to the specified number of bits.

nbits < 0  Device is bipolar with a range from -2^(abs(nbits)-1) to 2^((abs(nbits)-1)-1
           Values read with the asynInt32 interface will be sign extended
           using the sign bit (e.g. bit abs(nbits)-1 starting at bit 0).

aiRecord

A value is given to rval. Linear conversions are supported if the driver implements getBounds, or if nbits
is specified as explained above.

asynInt32 - SCAN "I/O Intr" is supported. If the record is "I/O Intr" scanned then when the
registerInterruptUser callback is called, it saves the value and calls scanIoRequest. When the
record is processed the saved value is put into rval. If the record is not "I/O Intr" scanned then
each time the record is processed, a new value is read via a call to pasynInt32->read.

♦ 

asynInt32Average - The registerInterruptUser callback adds the new value to a sum and also
increments the number of samples. When the record is processed the average is computed and the
sum and number of samples is set to zero.

♦ 

• 

aoRecord

rval is written. Linear conversions are supported if the driver properly implements getBounds, or if nbits

• 
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is specified as explained above.
longinRecord

A value is given to val. Each time the record is processed a new value is read. SCAN "I/O Intr" is
supported similar to aiRecord.

• 

longoutRecord

val is written.

• 

biRecord

A value is given to rval. The mask field in the record is not used. Each time the record is processed a new
value is read. SCAN "I/O Intr" is supported similar to aiRecord.

• 

boRecord

rval is written. The mask field in the record is not used.

• 

mbbiRecord

A value is given to rval. mask is computed from nobt and shft. Each time the record is processed a new
value is read. SCAN "I/O Intr" is supported similar to aiRecord.

• 

mbboRecord

rval is written. mask is computed from nobt and shft.

• 

Analog Input Example Records

   record(ai,"aiInt32") {
        field(SCAN,"I/O Intr")
        field(DTYP,"asynInt32")
        field(INP,"@asyn($(port),$(addr))")
        field(EGUF,"10.0")
        field(EGUL,"-10.0")
        field(PREC,"3")
   }
   # This record is for a 12-bit bipolar ADC for a driver that does not
   # support getBounds()
   record(ai,"aiInt32") {
        field(SCAN,"I/O Intr")
        field(DTYP,"asynInt32")
        field(INP,"@asynMask($(port),$(addr),-12)")
        field(EGUF,"10.0")
        field(EGUL,"-10.0")
        field(PREC,"3")
   }
   record(ai,"aiInt32Average") {
        field(SCAN,"10 second")
        field(DTYP,"asynInt32Average")
        field(INP,"@asyn($(port),$(addr))")
        field(EGUF,"10.0")
        field(EGUL,"-10.0")
        field(PREC,"3")
   }

Analog Output Example Record

   record(ao,"aoInt32") {
        field(DTYP,"asynInt32")

asynDriver

56 asynInt32 device support



        field(OUT,"@asyn($(port),$(addr))")
        field(EGUF,"10.0")
        field(EGUL,"-10.0")
        field(PREC,"3")
   }

Long Input Example Records

   record(longin,"liInt32") {
        field(SCAN,"I/O Intr")
        field(DTYP,"asynInt32")
        field(INP,"@asyn($(port),$(addr))")
   }

Long Output Example Record

   record(longout,"loInt32") {
        field(DTYP,"asynInt32")
        field(OUT,"@asyn($(port),$(addr))")
   }

Multibit Binary Input Example Records

   record(mbbi,"mbbiInt32") {
        field(SCAN,"I/O Intr")
        field(DTYP,"asynInt32")
        field(INP,"@asyn($(port),$(addr))")
        field(NOBT,"2")
        field(SHFT,"2")
        field(ZRST,"zeroVal")
        field(ONST,"oneVal")
        field(TWST,"twoVal")
        field(THST,"threeVal")
   }

Multibit Binary Output Example Record

   record(mbbo,"mbboInt32") {
        field(DTYP,"asynInt32")
        field(OUT,"@asyn($(port),$(addr))")
        field(NOBT,"2")
        field(SHFT,"16")
        field(ZRST,"zeroVal")
        field(ONST,"oneVal")
        field(TWST,"twoVal")
        field(THST,"threeVal")
   }

asynIntXXXArray device support (XXX=8, 16 or 32)

The following support is available:

device(waveform,INST_IO,asynIntXXXArrayWfIn,"asynIntXXXArrayIn")
device(waveform,INST_IO,asynIntXXXArrayWfOut,"asynIntXXXArrayOut")

devAsynIntXXXArray.c provides EPICS device support for drivers that implement interface asynIntXXXArray.
It has support for both reading and writing a waveform. SCAN "I/O Intr" is supported similar to the aiRecord in
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devAsynInt32 device support.

asynXXXTimeSeries device support (XXX=Int32 or Float64)

The following support is available:

device(waveform,INST_IO,asynInt32TimeSeries,"asynInt32TimeSeries")
device(waveform,INST_IO,asynFloat64TimeSeries,"asynFloat64TimSeries")

devAsynXXXTimeSeries.c provides EPICS device support to collect a time series of values into a waveform
record. It works with drivers that implement callbacks on the asynInt32 or asynFloat64 interfaces. This permits
more rapid and efficient acquisition of values from a driver than can be obtained using record support and
database operations. The waveform record RARM field is used to control acquisition as follows:

RARM=1 Erase and start acquisition, i.e. clear the waveform record to 0, set NORD=0, BUSY=1 and
enable callbacks.

• 

RARM=2 Stop acquisition, set BUSY=0.• 
RARM=3 Start acquisition (set BUSY=1) without clearing the waveform or setting NORD=0.• 

devAsynUInt32Digital

The following support is available:

device(bi,INST_IO,asynBiUInt32Digital,"asynUInt32Digital")
device(bo,INST_IO,asynBoUInt32Digital,"asynUInt32Digital")
device(longin,INST_IO,asynLiUInt32Digital,"asynUInt32Digital")
device(longout,INST_IO,asynLoUInt32Digital,"asynUInt32Digital")
device(mbbi,INST_IO,asynMbbiUInt32Digital,"asynUInt32Digital")
device(mbbo,INST_IO,asynMbboUInt32Digital,"asynUInt32Digital")
device(mbbiDirect,INST_IO,asynMbbiDirectUInt32Digital,"asynUInt32Digital")
device(mbboDirect,INST_IO,asynMbboDirectUInt32Digital,"asynUInt32Digital")

devAsynUInt32Digital.c provides EPICS device support for drivers that implement interface asynUInt32Digital.
The INP or OUT field must define asynMask. The mask specified in the argument to asynMask is used in the
calls to asynUInt32Digital methods. In addition it is used to set the mask fields in bi and bo records and the mask
and shft fields in mbbi, mbbo, mbbiDirect, and mbboDirect records.

biRecord

A value is given to rval. asynInt32 - SCAN "I/O Intr" is supported. If the record is "I/O Intr" scanned then
when the registerInterruptUser callback is called, it saves the value and calls scanIoRequest. When the
record is processed the saved value is put into rval. If the record is not "I/O Intr" scanned then each time
the record is processed, a new value is read via a call to pasynUInt32Digital->read.

• 

boRecord

rval is written.

• 

longinRecord

A value is given to val. Each time the record is processed a new value is read. SCAN "I/O Intr" is
supported similar to aiRecord.

• 
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longoutRecord

val is written.

• 

mbbiRecord

A value is given to rval. Each time the record is processed a new value is read. SCAN "I/O Intr" is
supported similar to aiRecord.

• 

mbboRecord

rval is written.

• 

mbbiDirectRecord

A value is given to rval. Each time the record is processed a new value is read. SCAN "I/O Intr" is
supported similar to aiRecord.

• 

mbboDirectRecord

rval is written.

• 

Binary Input Example Record

record(bi,"biUInt32Bit0") {
    field(SCAN,"I/O Intr")
    field(DTYP,"asynUInt32Digital")
    field(INP,"@asynMask( $(port) , 0, 0x1 , 1.0) ")
    field(ZNAM,"zero")
    field(ONAM,"one")
}

Binary Output Example Record

record(bo,"boUInt32Bit2") {
    field(DTYP,"asynUInt32Digital")
    field(OUT,"@asynMask( $(port) , 0, 0x4 , 1.0) ")
    field(ZNAM,"zero")
    field(ONAM,"one")
}

Long Input Example Record

record(longin,"liUInt32") {
    field(SCAN,"I/O Intr")
    field(DTYP,"asynUInt32Digital")
    field(INP,"@asynMask( $(port) , 0, 0xffffffff , 1.0) ")
}

Long Output Example Record

record(longout,"loUInt32") {
    field(DTYP,"asynUInt32Digital")
    field(INP,"@asynMask( $(port) , 0, 0xffffffff , 1.0) ")
}

Multibit Input Example Record

record(mbbi,"mbbiUInt32") {
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    field(SCAN,"I/O Intr")
    field(DTYP,"asynUInt32Digital")
    field(INP,"@asynMask( digital , 0, 0x3 , 1.0) ")
    field(ZRST,"zero")
    field(ONST,"one")
    field(TWST,"two")
    field(THST,"three")
    field(ZRVL,"0x0")
    field(ONVL,"0x1")
    field(TWVL,"0x2")
    field(THVL,"0x3")
}

Multibit Output Example Record

record(mbbo,"mbboUInt32") {
    field(DTYP,"asynUInt32Digital")
    field(OUT,"@asynMask( digital , 0, 0x7 , 1.0) ")
    field(ZRST,"zero")
    field(ONST,"one")
    field(TWST,"two")
    field(THST,"three")
    field(FRST,"four")
    field(FVST,"five")
    field(SXST,"six")
    field(SVST,"seven")
    field(ZRVL,"0x0")
    field(ONVL,"0x1")
    field(TWVL,"0x2")
    field(THVL,"0x3")
    field(FRVL,"0x4")
    field(FVVL,"0x5")
    field(SXVL,"0x6")
    field(SVVL,"0x7")
}

devAsynFloat64 device support

The following support is available:

device(ai,INST_IO,asynAiFloat64,"asynFloat64")
device(ai,INST_IO,asynAiFloat64Average,"asynFloat64Average")
device(ao,INST_IO,asynAoFloat64,"asynFloat64")

devAsynFloat64.c provides EPICS device support for drivers that implement interface asynFloat64.

aiRecord

A value is given to val.

asynFloat64 - SCAN "I/O Intr" is supported. If the record is "I/O Intr" scanned then when the
registerInterruptUser callback is called, it saves the value and calls scanIoRequest. When the
record is processed the saved value is put into val. If the record is not "I/O Intr" scanned then
each time the record is processed, a new value is read via a call to pasynFloat64->read.

♦ 

asynFloat64Average - The registerInterruptUser callback adds the new value to a sum and also
increments the number of samples. When the record is processed the average is computed and the
sum and number of samples is set to zero.

♦ 

• 
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aoRecord

val is written.

• 

asynFloatXXXArray device support (where XXX=32 or 64)

The following support is available:

device(waveform,INST_IO,asynFloatXXXArrayWfIn,"asynFloatXXXArrayIn")
device(waveform,INST_IO,asynFloatXXXArrayWfOut,"asynFloatXXXArrayOut")

devAsynFloatXXXArray.c provides EPICS device support for drivers that implement interface
asynFloatXXXArray. It has support for both reading and writing a waveform. SCAN "I/O Intr" is supported
similar to the aiRecord in devAsynInt32 device support.

octet device support

The following support is available:

device(stringin,INST_IO,asynSiOctetCmdResponse,"asynOctetCmdResponse")
device(stringin,INST_IO,asynSiOctetWriteRead,"asynOctetWriteRead")
device(stringin,INST_IO,asynSiOctetRead,"asynOctetRead")
device(stringout,INST_IO,asynSoOctetWrite,"asynOctetWrite")
device(waveform,INST_IO,asynWfOctetCmdResponse,"asynOctetCmdResponse")
device(waveform,INST_IO,asynWfOctetWriteRead,"asynOctetWriteRead")
device(waveform,INST_IO,asynWfOctetRead,"asynOctetRead")
device(waveform,INST_IO,asynWfOctetWrite,"asynOctetWrite")
device(waveform,INST_IO,asynWfOctetWriteBinary,"asynOctetWriteBinary")

Support for drivers that implement interface asynOctet. The support is for stringin/stringout and waveform
records. The waveform support is similar to the string support. The waveform records must define FTVL to be
CHAR or UCHAR, i.e. it must be an array of octets. The waveform provides the following features not provided
by the string support:

unlimited size - string records hold a maximum of 40 characters.• 
both string and binary data. Beginning in R4-30 asynWfWriteOctet calls strnlen() to determine the length
of the string, and passes this length to the driver, i.e. does not include the trailing nil. This is consistent
with the behavior of the devAsynOctet for the stringout record. The asynOctetWriteBinary support added
in R4-30 always uses NORD as the length that it passes to the driver, and does not call strnlen().

• 

Four types of support are provided:

CmdResponse The INP field is of the form:

    field(INP,"@asyn(portName,addr,timeout) cmd")

During record initialization, cmd is converted by dbTranslateEscape. The resultant string is the command
to send to the device. When the record is processed the command is sent to the device and the response
read into the record.

• 

WriteRead The INP field is of the form:

    field(INP,"@asyn(portName,addr,timeout) pvname")

• 
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pvname must refer to a field in a record in the same IOC. During record initialization the pvname is
located. When the record is processed dbGet is called to read the current value of pvname. This value is
sent to the device. A read is then issued and the result stored in the record. For asynSiOctetWriteRead, the
value obtained from pvname is passed through dbTranslateEscape before sending it. For
asynWfOctetWriteRead it is not passed through dbTranslateEscape.
Write The INP(OUT) field is of the form:

    field(INP,"@asyn(portName,addr,timeout) drvUser")

drvUser is information that is passed to the portDriver if it implements interface asynDrvUser. When the
record is processed the value stored in the record is sent to the device.

• 

Read The INP field is of the form:

    field(INP,"@asyn(portName,addr,timeout) drvUser")

drvUser is information that is passed to the portDriver if it implements interface asynDrvUser. When the
record is processed a read request is made. The result is read into the record.

• 

Record alarms

The generic EPICS device support sets the record alarm status and severity when errors occur. Beginning in
R4-30 the alarmStatus and alarmSeverity fields were added to the asynUser structure. Drivers can use these fields
to explicitly control the record STAT and SEVERITY fields, independent of the function return status or the
asynUser.auxStatus field.

If the pasynUser->alarmStatus or pasynUser->alarmSeverity field is zero then the record alarm status or severity
is controlled by the function return status or the asynUser.auxStatus field. For records that do not use callbacks
(not SCAN=I/O Intr or asynXXXAverage or asynXXXTimeSeries) the status information is passed from the
driver to device support in the asynStatus return of the interface function call, e.g. pasynInt32->read(). The driver
maps the asynStatus values to the record STAT and SEVR values using the function
pasynEpicsUtils->asynUserToEpicsAlarm(). The SEVR field is currently always set to INVALID_ALARM for
any error. The STAT field is set using following mapping:

  asynSuccess = epicsAlarmNone
  asynTimeout = epicsAlarmTimeout
  asynOverflow = epicsAlarmHWLimit
  asynError = epicsAlarmRead or epicsAlarmWrite
  asynDisconnected = epicsAlarmComm
  asynDisabled = epicsAlarmDisable

For records that use callbacks, the status information is passed from the driver to device support using the
pasynUser->auxStatus field in the pasynUser that is passed in the callback. This feature was added in asyn R4-19.
Prior to that release it was not possible for drivers to control the alarm state of records that used callbacks. Drivers
should set pasynUser->auxStatus to asynSuccess for normal operation and to another value to indicate a problem.
The same mapping described above is used to control the values of STAT and SEVR. If the
pasynUser->alarmStatus or pasynUser->alarmSeverity fields are non-zero then these values are used to set the
record STAT and SEVR fields, regardless of the value of asynUser.auxStatus.
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asynRecord: Generic EPICS Record Support

A special record type asynRecord is provided. Details are described in  asynRecord. This section provides a brief
description of how to use it.

Each IOC can load one or more instances of asynRecord. An example is:

cd $(ASYN)
dbLoadRecords("db/asynRecord.db","P=asyn,R=Test,PORT=L0,ADDR=15,IMAX=0,OMAX=0")

The example creates a record with name "asynTest" (formed from the concatenation of the P and R macros) that
will connect to port "L0" and addr 15. After the ioc is started, it is possible to change PORT and/or ADDR. Thus,
a single record can be used to access all asyn devices connected to the IOC. Multiple records are only needed if
one or more devices need a dedicated record.

An medm display is available for accessing an asynRecord. It is started as follows:

cd <asyn>/medm
medm -x -macro "P=asyn,R=Test" asynRecord.adl

The following medm display appears.
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Example

The following reads from a device via octet messages:

#include <asynDriver.h>
...
#define BUFFER_SIZE 80
typedef struct myData {
    epicsEventId done;
    asynOctet    *pasynOctet;
    void         *drvPvt;
    char         buffer[BUFFER_SIZE];
}myData;

static void queueCallback(asynUser *pasynUser) {
    myData     *pmydata = (myData *)pasynUser->userPvt;
    asynOctet  *pasynOctet = pmydata->pasynOctet;
    void       *drvPvt = pmydata->drvPvt;
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    asynStatus status;
    int        writeBytes,readBytes;
    int        eomReason;

    asynPrint(pasynUser,ASYN_TRACE_FLOW,"queueCallback entered\n");
    status = pasynOctet->write(drvPvt,pasynUser,pmydata->buffer,
              strlen(pmydata->buffer),&writeBytes);
    if(status!=asynSuccess) {
        asynPrint(pasynUser,ASYN_TRACE_ERROR,
            "queueCallback write failed %s\n",pasynUser->errorMessage);
    } else {
        asynPrintIO(pasynUser,ASYN_TRACEIO_DEVICE,
            pmydata->buffer,strlen(pmydata->buffer),
            "queueCallback write sent %d bytes\n",writeBytes);
    }
    status = pasynOctet->read(drvPvt,pasynUser,pmydata->buffer,
         BUFFER_SIZE,&readBytes,&eomReason);
    if(status!=asynSuccess) {
        asynPrint(pasynUser,ASYN_TRACE_ERROR,
            "queueCallback read failed %s\n",pasynUser->errorMessage);
    } else {
        asynPrintIO(pasynUser,ASYN_TRACEIO_DEVICE,
            pmydata->buffer,BUFFER_SIZE,
            "queueCallback read returned: retlen %d eomReason 0x%x data %s\n",
            readBytes,eomReason,pmydata->buffer);
    }
    epicsEventSignal(pmydata->done);
}

static void asynExample(const char *port,int addr,const char *message)
{
    myData        *pmyData;
    asynUser      *pasynUser;
    asynStatus    status;
    asynInterface *pasynInterface;

    pmyData = (myData *)pasynManager->memMalloc(sizeof(myData));
    memset(pmyData,0,sizeof(myData));
    strcpy(pmyData->buffer,message);
    pasynUser = pasynManager->createAsynUser(queueCallback,0);
    pasynUser->userPvt = pmyData;
    status = pasynManager->connectDevice(pasynUser,port,addr);
    if(status!=asynSuccess) {
        printf("can't connect to serialPort1 %s\n",pasynUser->errorMessage);
        exit(1);
    }
    pasynInterface = pasynManager->findInterface(
        pasynUser,asynOctetType,1);
    if(!pasynInterface) {
        printf("%s driver not supported\n",asynOctetType);
        exit(-1);
    }
    pmyData->pasynOctet = (asynOctet *)pasynInterface->pinterface;
    pmyData->drvPvt = pasynInterface->drvPvt;
    pmyData->done = epicsEventCreate(epicsEventEmpty);
    status = pasynManager->queueRequest(pasynUser,asynQueuePriorityLow, 0.0);
    if(status) {
        asynPrint(pasynUser,ASYN_TRACE_ERROR,
            "queueRequest failed %s\n",pasynUser->errorMessage);
    }
    epicsEventWait(pmyData->done);
    status = pasynManager->freeAsynUser(pasynUser);
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    if(status) {
        asynPrint(pasynUser,ASYN_TRACE_ERROR,
            "freeAsynUser failed %s\n",pasynUser->errorMessage);
    }
    epicsEventDestroy(pmyData->done);
    pasynManager->memFree(pasynUser->userPvt,sizeof(myData));
}

The flow of control is as follows:

A port driver calls registerPort. This step is not shown in the above example.1. 
asynExample allocates myData and an asynUser.2. 
asynExample connects to a device and to the asynOctet interface for the port driver.3. 
When it is ready to communicate with the driver it calls queueRequest.4. 
queueCallback is called. It calls the port driver's write and read methods.5. 

Test Application

The asynDriver distribution includes code to test asynDriver. It is also an example of how to interface to
asynManager. The example resides in <top>/testApp and contains the following components:

Db/
   test.db
   testBlock.db
adl/
   test.adl
src/
   devTestBlock.dbd
   echoDriver.c
   addrChangeDriver.c
   devTestBlock.c
   interposeInterface.c

echoDriver is a port driver that echos messages it receives. It implements asynCommon and asynOctet. When
asynOctet:write is called it saves the message. When asynOctet:read is called, the saved message is returned and
the message is flushed. echoDriverInit has an argument that determines if it acts like a multiDevice or a single
device port driver.

An instance of echoDriver is started via the iocsh command:

echoDriverInit(portName,delay,noAutoConnect,multiDevice)

where

portName - the port name for this instance.• 
delay - The time to delay after a read or write. If delay is 0 then echoDriver registers as a synchronous
port driver, i.e. bit ASYN_CANBLOCK of attributes is not set. If delay>0 then ASYN_CANBLOCK is
set.

• 

noAutoConnect - Determines initial setting for port.• 
multiDevice - If true then it supports two devices with addresses 0 and 1. If false it does not set
ASYN_MULTIDEVICE, i.e. it only supports a single device.

• 

addrChangeDriver is a multidevice driver that is an asynUser of another port driver. In the example application it
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connects to echoDriver. An example where this technique might be used is a port driver for mult-drop serial that
connects to a standard serial port.

An instance of addrChangeDriver is started via the iocsh commandL:

addrChangeDriverInit(portName,lowerPort,addr)

where

portName - the port name for this instance.• 
lowerPort - the port to which addrChangeDriver connects• 
addr - The address to which addrChangeDriver connects• 

devTestBlock is device support that tests blockProcessCallback. It has device support for stringin records. The
INP field has the syntax:

    field(INP,"@asyn(port,addr,timeout) pvname)

where:

asyn(port,addr,timeout) is same as for devEpics support.• 
pvname - The name of a record in the same ioc.• 

When the stringin record is processed the following occurs.

When process is called and PACT is :
TRUE - then it just returns to record support.♦ 
FALSE - It does what follows.♦ 

• 

When processing starts the state is stateIdle.• 
blockProcessCallback is called.• 
callbackRequestDelayed is called (.1 second delay). The callback calls queueRequest.• 
When processCallback is called it does the following:

calls unblockProcessCallback♦ 
If state is stateIdle

Calls dbGet to get a string value from pvname◊ 
calls pasynOctet->write to send the string◊ 
sets state to stateWrite◊ 
Calls blockProcessCallback◊ 
callbackRequestDelayed is called The callback calls queueRequest.◊ 
completes. processCallback will be called again◊ 

♦ 

If state is stateWrite
calls pasynOctet->read and puts the value in VAL.◊ 
Sets state = stateIdle◊ 
requests the the record be processed. This time PACT will be TRUE◊ 

♦ 

• 

test.db is a template containing three records: a calc record, which forward links to a stringout record which
forward links to a stringin record. The stringOut record attaches to the device support supplied by
asynOctetWriteRead.c. When the calcRecord is processed the following happens:

The calcRecord acts as a counter that overflows when the count reaches 10. After counting to forward
links ti the stringIn record.

• 
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The string in record gets the current value of the counter converted to s character string and forward links
to the stringOut record.

• 

The stringOut record gets the value from the stringIn record an calls queueRequest. The record is left with
PACT true.

• 

The processCallback calls pasynOctet->write passing the value obtained from the stringIn record. The
then does does a pasynOctet->read. When this completes it asks for the record to complete processing.

• 

The stringOut record completes processing.• 

testBlock.db is a template similar to test.db except that it attached to device support testBlock instead of
asynOctetWriteRead.

Executing "medm -x test.adl" produces the display:

It assumes that an ioc has been started via:
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cd <top>/iocBoot/ioctest
../../bin/solaris-sparc/test st.cmd

This starts two versions of echoDriver as port "A" and "B". port A acts as single device port. port B acts as a
multiDevice port that has two devices. For each of the three possible devices, the st.cmd file starts up two sets of
records from test.db The st.cmd file also loads a set of records from asynTest.db for port A and for port B and for
each of the two devices attached to port B. It also loads a set of records from asynRecord.db. It starts one version
of addrChangeDriver which connects to port A.

It loads six versions of test.db and four versions of testBlock.db The test.adl file attaches to these database
records.

asynGpib

GPIB has additional features that are not supported by asynCommon and asynOctet. asynGpib defines two
interfaces.

asynGpib - This is the interface that device support calls. It provides the following:
A set of GPIB specific methods that device support can call.♦ 
Code that handles generic GPIB functions like SRQ polling.♦ 
A registerPort method which is called by GPIB port drivers.♦ 

• 

asynGpibPort - A set of methods implemented by GPIB drivers• 

asynGpibDriver.h

asynGpibDriver.h contains the following definitions:

/* GPIB Addressed Commands*/
#define IBGTL "\x01"    /* Go to local */
#define IBSDC "\x04"    /* Selective Device Clear */
#define IBGET "\x08"    /* Group Execute Trigger */
#define IBTCT "\x09"    /* Take Control */

/* GPIB Universal Commands*/
#define IBDCL 0x14      /* Device Clear */
#define IBLLO 0x11      /* Local Lockout */
#define IBSPE 0x18      /* Serial Poll Enable */
#define IBSPD 0x19      /* Serial Poll Disable */
#define IBUNT 0x5f      /* Untalk */
#define IBUNL 0x3f      /* Unlisten */

/* Talk, Listen, Secondary base addresses */
#define TADBASE    0x40   /* offset to GPIB listen address 0 */
#define LADBASE    0x20   /* offset to GPIB talk address 0 */
#define SADBASE    0x60   /* offset to GPIB secondary address 0 */

#define NUM_GPIB_ADDRESSES    32
#include "asynDriver.h"
#include "asynInt32.h"
#define asynGpibType "asynGpib"
/* GPIB drivers */
typedef struct asynGpib asynGpib;
typedef struct asynGpibPort asynGpibPort;
/*asynGpib defines methods called by gpib aware users*/
struct asynGpib{
    /*addressedCmd,...,ren are just passed to device handler*/
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    asynStatus (*addressedCmd) (void *drvPvt,asynUser *pasynUser,
        const char *data, int length);
    asynStatus (*universalCmd) (void *drvPvt,asynUser *pasynUser,int cmd);
    asynStatus (*ifc) (void *drvPvt,asynUser *pasynUser);
    asynStatus (*ren) (void *drvPvt,asynUser *pasynUser, int onOff);
    /* The following are implemented by asynGpib */
    asynStatus (*pollAddr)(void *drvPvt,asynUser *pasynUser, int onOff);
    /* The following are called by low level gpib drivers */
    /*srqHappened is passed the pointer returned by registerPort*/
    void *(*registerPort)(
        const char *portName,
        int attributes,int autoConnect,
        asynGpibPort *pasynGpibPort, void *asynGpibPortPvt,
        unsigned int priority, unsigned int stackSize);
    void (*srqHappened)(void *asynGpibPvt);
};
epicsShareExtern asynGpib *pasynGpib;

struct asynGpibPort {
    /*asynCommon methods */
    void (*report)(void *drvPvt,FILE *fd,int details);
    asynStatus (*connect)(void *drvPvt,asynUser *pasynUser);
    asynStatus (*disconnect)(void *drvPvt,asynUser *pasynUser);
    /*asynOctet methods passed through from asynGpib*/
    asynStatus (*read)(void *drvPvt,asynUser *pasynUser,
                      char *data,int maxchars,int *nbytesTransfered,
                      int *eomReason);
    asynStatus (*write)(void *drvPvt,asynUser *pasynUser,
                      const char *data,int numchars,int *nbytesTransfered);
    asynStatus (*flush)(void *drvPvt,asynUser *pasynUser);
    asynStatus (*setEos)(void *drvPvt,asynUser *pasynUser,
                const char *eos,int eoslen);
    asynStatus (*getEos)(void *drvPvt,asynUser *pasynUser,
                char *eos, int eossize, int *eoslen);
    /*asynGpib methods passed thrtough from asynGpib*/
    asynStatus (*addressedCmd) (void *drvPvt,asynUser *pasynUser,
                const char *data, int length);
    asynStatus (*universalCmd) (void *drvPvt, asynUser *pasynUser, int cmd);
    asynStatus (*ifc) (void *drvPvt,asynUser *pasynUser);
    asynStatus (*ren) (void *drvPvt,asynUser *pasynUser, int onOff);
    /*asynGpibPort specific methods */
    asynStatus (*srqStatus) (void *drvPvt,int *isSet);
    asynStatus (*srqEnable) (void *drvPvt, int onOff);
    asynStatus (*serialPollBegin) (void *drvPvt);
    asynStatus (*serialPoll) (void *drvPvt, int addr, double timeout,int *status);
    asynStatus (*serialPollEnd) (void *drvPvt);
};

asynGpib

asynGpib describes the interface for device support code. It provides gpib specific functions like SRQ handling. It
makes calls to asynGpibPort. asynGpib.c implements asynCommon and asynOctet. It supports asynInt32 by using
the methods from asynInt32Base. asynInt32 is the way asynGpib reports SRQs to asynUsers.

An asynUser that wishes to receive SRQs calls pasynInt32->registerInterruptUser and must set asynUser.reason =
ASYN_REASON_SIGNAL. Although most gpib controllers are multidevice drivers, the VXI11 standard allows
for a controller (VXI-11.2) that attached to a single device, i.e. it is a single address port driver. For such
controllers, the use must specify addr = 0 in order to use SRQs. Also see the vxi support below for more details.
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asynGpib

addressedCmd The request is passed to the low level driver.
universalCmd The request is passed to the low level driver.
ifc The request is passed to the low level driver.
ren The request is passed to the low level driver.

pollAddr Set SRQ polling on or off. onOff = (0,1) means (disable, enable) SRQ polling of specified
address.

registerPort Register a port. When asynGpib receives this request, it calls asynManager.registerPort.
srqHappened Called by low level driver when it detects that a GPIB device issues an SRQ.

asynGpibPort

asynGpibPort is the interface that is implemented by gpib drivers, e.g. the VXI-11. It provides:

asynGpibPort

asynCommon
methods All the methods of asynCommon

asynOctet methods All the methods of asynOctet
addressedCmd Issue a GPIB addressed command.
universalCmd Issue a GPIB universal command.
ifc Issue a GPIB Interface Clear command.
ren Issue a GPIB Remote Enable command

srqStatus If return is asynSuccess then isSet is (0,1) if SRQ (is not, is) active. Normally only called
by asynGpib.

srqEnable Enable or disable SRQs. Normally only called by asynGpib.
serialPollBegin Start of serial poll. Normally only called by asynGpib.

serialPoll Poll the specified address and set status to the response. Normally only called by
asynGpib.

serialPollEnd End of serial poll. Normally only called by asynGpib.

Port Drivers

Local Serial Port

The drvAsynSerialPort driver supports devices connected to serial ports on the IOC.

Serial ports are configured with the drvAsynSerialPortConfigure and asynSetOption commands:

   drvAsynSerialPortConfigure("portName","ttyName",priority,noAutoConnect,
        noProcessEosIn)
   asynSetOption("portName",addr,"key","value")

where the arguments are:

portName - The portName that is registered with asynGpib.• 
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ttyName - The name of the local serial port (e.g. "/dev/ttyS0", "COM1").• 
priority - Priority at which the asyn I/O thread will run. If this is zero or missing,then
epicsThreadPriorityMedium is used.

• 

addr - This argument is ignored since serial devices are configured with multiDevice=0.• 
noAutoConnect - Zero or missing indicates that portThread should automatically connect. Non-zero if
explicit connect command must be issued.

• 

noProcessEos If 0 then asynInterposeEosConfig is called specifying both processEosIn and
processEosOut.

• 

The setEos and getEos methods have no effect and return asynError. The read method blocks until at least one
character has been received or until a timeout occurs. The read method transfers as many characters as possible,
limited by the specified count. asynInterposeEos can be used to support EOS.

The following table summarizes the drvAsynSerialPort driver asynSetOption keys and values. When a serial port
connects the current values are fetched.

Key Value
baud 50 75 110 134 150 200 300 600 1200 2400 9600 ...
bits 8 7 6 5
parity none even odd
stop 1 2
clocal Y N
crtscts N Y
ixon N Y
ixoff N Y
ixany N Y
rs485_enable N Y
rs485_rts_on_send N Y
rs485_rts_after_send N Y
rs485_delay_rts_before_send msec_delay
rs485_delay_rts_after_send msec_delay
On some systems (e.g. Windows, Darwin) the driver accepts any numeric value for the baud rate, which must, of
course be supported by the system hardware. On Linux the choices are limited to the values like B300, B9600,
etc. which are defined in /usr/include/bits/termios.h.

The clocal and crtscts parameter names are taken from the POSIX termios serial interface definition. The clocal
parameter controls whether the modem control lines (Data Terminal Ready, Carrier Detect/Received Line Signal
Detect) are used (clocal=N) or ignored (clocal=Y). The crtscts parameter controls whether the hardware
handshaking lines (Request To Send, Clear To Send) are used (crtscts=Y) or ignored (crtscts=N).

The vxWorks sioLib serial support does not provide support for modem control lines. It also uses clocal for what
is actually crtscts. For vxWorks the standard serial support accepts both clocal and crtscts for getOption and
setOption. clocal=Y implies crtscts=N and clocal=N implies crtscts=Y.

ixon controls XON/OFF flow control on output. If the IOC receives an XOFF character, it suspends output until
an XON character is received.
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ixoff controls XON/OFF flow control on input. The IOC sends XOFF and XON characters as necessary to
prevent input from coming in faster than programs are reading it. The external device sending the input data must
respond to an XOFF character by suspending transmission, and to an XON character by resuming transmission.

The ixany flag allows any input character to restart output when output has been suspended with the XOFF
character. Otherwise, only the XON character restarts output. This flag is not available on all systems, including
WIN32.

The rs485 options are only supported on Linux, only kernels ≥ 2.6.35, and only on hardware ports that support
RS-485. The delay option units are integer milliseconds.

vxWorks IOC serial ports may need to be set up using hardware-specific commands. Once this is done, the
standard drvAsynSerialPortConfigure and asynSetOption commands can be issued. For example, the following
example shows the configuration procedure for a port on a GreenSprings octal UART Industry-Pack module on a
GreenSprings VIP616-01 carrier.

ipacAddVIPC616_01("0x6000,B0000000")
tyGSOctalDrv(1)
tyGSOctalModuleInit("Mod0","232", 0x80, 0, 0)
tyGSOctalDevCreate("/tyGS/0/0","Mod0",0,0,1000,1000)
drvAsynSerialPortConfigure("/tyGS/0/0","/tyGS/0/0",0,0,0)
asynSetOption("/tyGS/0/0",0,"baud","9600")

For the IP520:

IP520Drv(1)
IP520ModuleInit("UART_0", "232", 0xC2, 0, 0)
IP520DevCreate("A1", "UART_0", 0, 0, 1000, 1000)
drvAsynSerialPortConfigure("A1","A1",0,0,0)
asynSetOption("A1",0,"baud",9600)
asynOctetSetInputEos( "A1",0,"\r")
asynOctetSetOutputEos("A1",0,"\r")

TCP/IP or UDP/IP Port

The drvAsynIPPort driver supports devices which communicate over a TCP/IP or UDP/IP connection. A typical
example is a device connected through an Ethernet/Serial converter box.

TCP/IP or UDP/IP connections are configured with the drvAsynIPPortConfigure command:

   drvAsynIPPortConfigure("portName","hostInfo",priority,noAutoConnect,
        noProcessEos)

where the arguments are:

portName - The portName that is registered with asynManager.• 
hostInfo - The Internet host name, port number, optional local port number, and optional IP protocol of
the device. The format is:
<host>:<port>[:localPort] [protocol]
(e.g. "164.54.9.90:4002", "164.54.9.90:4001:10101", "serials8n3:4002", "serials8n3:4002 TCP" or
"164.54.17.43:5186 udp"). If no protocol is specified, TCP will be used. Possible protocols are

TCP♦ 
UDP♦ 

• 
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UDP* -- UDP broadcasts. The address portion of the argument must be the network broadcast
address (e.g. "192.168.1.255:1234 UDP*").

♦ 

HTTP -- Like TCP but for servers which close the connection after each transaction.♦ 
COM -- For Ethernet/Serial adapters which use the TELNET RFC 2217 protocol. This allows
port parameters (speed, parity, etc.) to be set with subsequent asynSetOption commands just as
for local serial ports. The default parameters are 9600-8-N-1 with no flow control.

♦ 

If the hostInfo argument begins wih the characters unix:// the remainder of the argument is taken to be the
name of a UNIX-domain stream socket.
Note that the localPort should almost never be used because normally the local host choses an unused
random local port that it binds to and passes to the server. However, there are some unusual servers that
only accept a specific local port or range of local ports, in which case localPort must be specified.
priority - Priority at which the asyn I/O thread will run. If this is zero or missing, then
epicsThreadPriorityMedium is used.

• 

noAutoConnect - Zero or missing indicates that portThread should automatically connect. Non-zero if
explicit connect command must be issued.

• 

noProcessEos If 0 then asynInterposeEosConfig is called specifying both processEosIn and
processEosOut.

• 

Only asynOctet methods write, read, and flush are implemented. Calling the other methods will result in an error
unless asynInterposeEos is used for the other asynOctet methods. read blocks until at least one character has been
received or until a timeout occurs. read transfers as many characters as possible, limited by the specified count.

The following table summarizes the drvAsynIPPort driver asynSetOption keys and values.

Key Value Description

disconnectOnReadTimeout N Y Default=N. If Y then if a read operation times out the
driver automatically disconnect the IP port.

hostInfo <host>:<port>[:localPort]
[protocol]

The IP port hostInfo specification using the same syntax
as drvAsynIPPortConfigure. This option allows
changing at run time the Internet host and port to which
this asyn port is connected. The only restriction is that
the setting of the COM (TELNET RFC 2217) protocol
cannot be changed from that specified with
drvAsynIPPortConfigure. This is because if COM is
specified in the drvAsynIPPortConfigure command then
asynOctet and asynOption interpose interfaces are used,
and asynManager does not support removing interpose
interfaces.

In addition to these key/value pairs if the COM protocol is used then the drvAsynIPPort driver uses the same
key/value pairs as the drvAsynSerialPort driver for specifying the serial parameters, i.e. "baud", "bits", etc.

asynInterposeEos and asynInterposeFlush can be used to provide additional functionality.

TCP/IP Server

The drvAsynIPServerPort driver supports asyn socket servers by listening for TCP/IP or UDP connections from
remote clients. The listener thread then creates a new drvAsynIPPort port by calling drvAsynIPPortConfigure (or
re-uses a disconnected port it previously created), and calls back any registered asyn clients with the name of the
new port. These asyn clients will typically be socket servers.
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IP server listeners are configured with the drvAsynIPServerPortConfigure command:

 drvAsynIPServerPortConfigure("portName", "serverInfo", maxClients, priority, 
      noAutoConnect, noProcessEos);

where the arguments are:

portName - The portName that is registered with asynManager.• 
serverInfo - The Internet host name and port number to listen for connections on (e.g. "localhost:4002"
for TCP, "localhost:4002 UDP" for UDP).

• 

maxClients - the maximum number of IP clients that can be simultaneously connected on this port.
Additional connect requests will fail.

• 

priority - Priority at which the listener thread and any asyn I/O ports it creates will run. If this is zero or
missing, then epicsThreadPriorityMedium is used.

• 

noAutoConnect - Zero or missing indicates that the listener port should automatically connect. Non-zero
if explicit connect command must be issued. Note that all asyn I/O ports that the listener thread creates
will be created with noAutoConnect=1, but this is transparent to socket server applications, because the
listener thread does the explicit connect for them.

• 

noProcessEos is passed to drvAsynIPPortConfigure when new asyn I/O ports are created. If 0 then
asynInterposeEosConfig is called specifying both processEosIn and processEosOut.

• 

This driver implements the asynOctet interface. The only methods it supports are registerInterruptUser and
cancelInterruptUser. Calling the other asynOctet methods will result in an error. The following happens when a
new connection is received on the port specified in drvAsynIPServerPortConfigure:

If there are no registered asyn clients (who have called registerInterruptUser on the asynOctet interface of
the listener port) then the incoming connection is immediately closed, since there are no IP servers
available to service it. If there is at least one registered client, then the following steps are executed.

• 

The list of drvAsynIPPort ports that this listener thread has created is searched to see if there is an
existing port that is currently disconnected because the remote IP client disconnected.

• 

If there is an existing disconnected port, then it is reconnected with the file descriptor from the new IP
connection.

• 

If there is no available existing port, then a new one is created by calling drvAsynIPPortConfigure. The
name of the new port is of the form portName:1, portName:2, etc., where portName is the name of the
listener port.

• 

The asynTraceMask and asynTraceIOMask of the newly connected port are set to the current values of
the listener thread port. This makes it possible to trace the early stages of execution of the callbacks to the
registered clients, before one could enable tracing at iocsh.

• 

All registered asyn clients (who have called registerInterruptUser on the asynOctet interface of the
listener port) are called back with the name of the newly connected port.

• 

The clients then will connect to this new asyn port and perform I/O using the asynOctet methods.• 

VXI-11

VXI-11 is a TCP/IP protocol for communicating with IEEE 488.2 devices. It is an RPC based protocol. In
addition to the VXI-11 standard, three additional standards are defined.

VXI-11.1 - A standard for communicating with VXIbus devices. These controllers have a vxiName that
starts with "vxi" and can control multiple devices, i.e. the port driver will be a multiaddress driver.

• 

VXI-11.2 - A standard for communicating with a IEEE 488.1 device. This means that the TCP/IP
connection is talking to a GPIB controller that is talking to a GPIB bus. These devices have an vxiName

• 
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that starts with "gpib". Note that the Agilent E2050A does not follow the standard. For it the vxiName
must be "hpib"
VXI-11.3 - A standard for communicating with IEEE 488.2 devices. This means that the TCP/IP
connection is talking directly with an device. These devices have an vxiName that starts with "inst".
These controllers can control only a single device, i.e. the port driver will be a single address driver

• 

NOTES

No VXI-11.1 controller has been tested.• 
The following VXI-11.2 controllers have been tested: Agilent E2050 and E5810• 
The following VXI-11.3 instruments have been tested:

Tektronic TDS3054B scope.

SRQs do not work. Do not know why

♦ 

Tektronic TDS5054B scope.

SRQs do work. The asynUser MUST specify addr = 0. Also do NOT set bit 0x40 of Service
Request Enable register, i.e. cause SRQ when device has output available. This did not work and
can cause infinite set of SRQs

♦ 

• 

Consult the following documents (available on-line) for details.

VMEbus Extensions for Instrumentation
    VXI-11   TCP/IP Instrument Protocol Specification
    VXI-11.1 TCP/IP-VXIbus Interface Specification
    VXI-11.2 TCP/IP-IEEE 488.1 Interface Specification
    VXI-11.3 TCP/IP-IEEE 488.2 Instrument Interface Specification

The following commands may be specified in the st.cmd file

    E2050Reboot("inet_addr")
    E5810Reboot("inet_addr","password")
    vxi11Configure("portName","inet_addr",flags,"timeout",
        "vxiName",priority,noAutoConnect)

where

inet_addr - Internet Address• 
password - password. If given as 0 the default E5810 is used.• 
portName - The portName that is registered with asynGib.• 
flags - Bitmap

Bit 0 (0x1) recoverWithIFC - (0,1) => (don't, do) issue IFC when error occurs.♦ 
Bit 1 (0x2) lockDevices - (0,1 ) => (don't, do) lock devices when creating the link.♦ 
Bit 2 (0x4) noSRQ - (0,1 ) => (do, don't) set up a VXI-11 SRQ channel.♦ 

• 

timeout - I/O operation timeout in seconds as a string. Prior to release R4-16 this was a double, but was
changed to a string because it is not safe to pass doubles on the vxWorks shell. If "0.0", then a default is
assigned.

• 

vxiName - Must be chosen as specified above. NOTE: For the Agilent E2050 vxiName must be "hpib".
For the Agilent E5810 use the name "gpib0". For an instrument that supports VXI11 try "inst0".

• 

priority - Priority at which the asyn I/O thread will run. If this is zero or missing, then
epicsThreadPriorityMedium is used.

• 

noAutoConnect - Zero or missing indicates that portThread should automatically connect. Non-zero if• 
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explicit connect command must be issued.

The vxi11 driver implements two timeouts: ioTimeout and rpcTimeout (Remote Procedure Call timeout). The
ioTimeout is taken from asynUser:timeout. The rpcTimeout is handled internally for each port. It has a default of
4 seconds but can be changed by calling setOptions. For example:

asynSetOption L0 -1 rpctimeout .1

Will change the rpcTimeout for port L0 to .1 seconds.

Linux-Gpib

The linux-gpib port driver was written to support  The Linux GPIB Package library.

In order to build this support the Linux GPIB Package must be installed. Also in configure/RELEASE the
statement:

    LINUX_GPIB=NO

must be changed to

    LINUX_GPIB=YES

Configuration command is:

    GpibBoardDriverConfig(portName,autoConnect,BoardIndex,timeout,priority)

where

portName - An ascii string specifying the port name that will be registered with asynDriver.• 
noAutoConnect - Non-zero indicates that portThread should automatically connect. Zero means explicit
connect command must be issued.

• 

boardIndex -Integer containing index of board (0 means /dev/gpib0). Normally it is 0. This must be the
same as in gpib.conf file (minor number - board index) of driver configuration.

• 

timeout - Time in seconds in which an i/o operation must complete. Zero means disabled. This is
"general" timeout for every call to low level drivers. For actual read/write operations timeout must be
defined in device support. Both timeouts are converted into integers 0-17 which represents disabled to
1000 seconds.

• 

priority - An integer specifying the priority of the port thread. A value of 0 will result in a default value
being assigned.

• 

An example is:

GpibBoardDriverConfig("L0",1,0,3,0)

NOTES:

AsynOption Interface is supported. Key (hexadecimal) and val (integer) arguments to setPortOptions
function must be appropriate values represented as character arrays. See GPIB library documentation for
details.

• 

pgpibCmd type GPIBREADW and GPIBEFASTIW were not tested.• 
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The linux-port driver was tested with PC104-GPIB board from Measurement Computing.• 

Green Springs IP488

This is support for the Green Springs Industry Pack GPIB carrier. The configuration command is:

    gsIP488Configure(portName,carrier,module,intVec,priority,noAutoConnect)

where

portName - An ascii string specifying the port name that will be registered with asynDriver.• 
carrier - An integer identifying the Industry Pack Carrier• 
module - An integer identifying the module on the carrier• 
intVec - An integer specifying the interrupt vector• 
priority - An integer specifying the priority of the portThread. A value of 0 will result in a defalt value
being assigned

• 

noAutoConnect - Zero or missing indicates that portThread should automatically connect. Non-zero if
explicit connect command must be issued.

• 

An example is:

#The following is for the Greensprings IP488 on an MV162 
ipacAddMVME162("A:l=3,3 m=0xe0000000,64")
gsIP488Configure("L0",0,0,0x61,0,0)

WARNING:

This module includes code that implement a 6 microsecond delay because the gpib interface chip requires it. The
first time gsIP488Configure is executed code is run to determine a variable used by the delay routine. It assumes
that there is no higher priority thread running that consumes lots of cpu cycles.

National Instruments GPIB-1014D

This is support for a National Instruments VME GPIB interface. The configuration command is:

    ni1014Config(portNameA,portNameB,base,vector,level,priority,noAutoConnect)

where

portNameA - An ascii string specifying the port name that will be registered with asynDriver for portA.• 
portNameB - An ascii string specifying the port name that will be registered with asynDriver for portB. If
only one port should be registered, then leave this as a null string. The support should also work for a
single port NI1014 but has not been tested.

• 

base - VME A16 base address.• 
vector - VME interrupt vector.• 
level - An integer specifying the interrupt level.• 
priority - In integer specifying the priority of the portThread. A value of 0 will result in a defalt value
being assigned

• 

noAutoConnect - Zero or missing indicates that portThread should automatically connect. Non-zero if
explicit connect command must be issued.

• 
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An example is:

ni1014Config("L0","L1",0x5000,0x64,5,0,0)

NOTES:

Ports A and B are almost but not quite the same. Thus the code for connecting to port A is slightly
different than the code for portB.

• 

In order to disconnect and reconnect either port, BOTH ports must be disconnected and reconnected.• 
When the ports are connected, portA MUST be connected before port B.• 
Programmed I/O, via interrupts, rather than DMA is implemented. Thus no A24 address space is required.• 

WARNING:

This module includes code that implement a 6 microsecond delay because the gpib interface chip requires it. The
first time ni1014Config is executed code is run to determine a variable used by the delay routine. It assumes that
there is no higher priority thread running that consumes lots of cpu cycles.

USB TMC (Test and Measurement Class) driver

Configure each instance of the driver in the application startup script:

usbtmcConfigure("asynPort", vendorId, productId, "serialNumber", priority, flags)

The asynPort and serialNumber arguments are strings and the other arguments are integers. A missing or 0
vendorId or productId matches any value and a missing or empty serialNumber string matches any value. Thus
the command:

usbtmcConfigure("usbtmc1")

will associate ASYN port usbtmc1 with the first USB TMC device discovered. A missing or 0 priority will set the
worker thread priority to its default value of 50 (epicsThreadPriorityMedium).

A missing flags argument is taken to be 0. As of now only one bit is used: Bit 0 (0x1) Disable/enable (1/0)
automatic port connection.

Non-octet records

In addition to the asynOctet stream this support module provides some values for records with DTYP=asynInt32.
Since the port is a single-address device the subaddress field of the INP or OUT '@asyn()' descriptor can not be
used. Instead the 'drvUser' string at the end of the INP or OUT field is used to distinguish the parameter to be read
or written.

Service Request (SRQ) handling

The presence of one or more records with INP="@asyn(port, 0, 0) SRQ") will cause the driver to create an extra
thread to read from the device Interrupt-In endpoint. The SCAN field must be "I/O Intr". Record processing will
occur when the device sends a service request message on the Interrupt-In endpoint and the value will be the
device status byte sent as part of the service request message. Typically the record type will be longin or
mbbiDirect.

asynDriver

National Instruments GPIB-1014D 79



Device Status Byte (STB)

The USBTMC/USB488 device status byte is read by a record with

INP="@asyn(port, 0, 0) STB").

Typically the record type will be longin or mbbiDirect.

Remote Enable (REN)

The device remote enable is written by a record with

OUT="@asyn(port, 0, 0) REN") 

Typically the record type will be bo.

Linux udev configuration

If attempts to communicate with a device result in error messages of the form "Access denied (insufficient
permissions)" you must add udev entries to allow access. In the /etc/udev/rules.d directory create a file,
55-usbtmc.rules for example, with a line for each device of interest.

To allow everyone in the "usbtmc" group access to a device with vendor code 1BFA (hexadecimal) and product
code 0498 (hexadecimal) the line would look like:

SUBSYSTEM=="usb", ATTRS{idVendor}=="1BFA", ATTRS{idProduct}=="0498", GROUP="usbtmc", MODE="0660"

To allow everyone access the line would look like:

SUBSYSTEM=="usb", ATTRS{idVendor}=="1BFA", ATTRS{idProduct}=="0498", MODE="0666"

The {idVendor} and {idProduct} values must match those of the device with which you wish to communicate.

StreamDevice Exception Handlers

The USBTMC driver attempts to take correct action when it detects that the device has been unplugged or
become unresponsive. The effectiveness of this depends somewhat on the level of support provided by the
underlying operating system so it is good practice to also specify the following StreamDevice global exception
handlers:

    @mismatch { disconnect; }
    @writetimeout { disconnect; }
    @readtimeout { disconnect; }
    @replyTimeout { disconnect; }

Additional Drivers

The drivers noted above are included as part of the ASYN distribution.  Additional drivers are available,
including:

Driver for Prologix LAN/GPIB adapter• 
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asynPortDriver C++ base class

A C++ base class called asynPortDriver is available. This is a base class from which real asyn port drivers can be
derived. It greatly simplifies the job of writing an asyn port driver, because it takes care of all of the tasks like
registering the port, registering the interfaces, and calling interrupt clients. It is documented separately in
asynPortDriver.html.

asynPortClient C++ classes

asynPortClient is a set of C++ classes that are designed to simplify the task of writing a client that directly
communicates with an asyn port driver, without running an EPICS IOC. They handle the details of connecting to
the driver, finding the required interfaces, etc. They only uses the synchronous interfaces, so all calls are blocking.
If clients need asynchronous operation then they can use the normal C interface with
pasynManager->queueRequest. It is documented separately in  asynPortClient.html.

Diagnostic Aids

iocsh Commands

    asynReport(level,portName)
    asynInterposeFlushConfig(portName,addr,timeout)
    asynInterposeEosConfig(portName,addr,processIn,processOut)
    asynSetTraceMask(portName,addr,mask)
    asynSetTraceIOMask(portName,addr,mask)
    asynSetTraceInfoMask(portName,addr,mask)
    asynSetTraceFile(portName,addr,filename)
    asynSetTraceIOTruncateSize(portName,addr,size)
    asynSetOption(portName,addr,key,val)
    asynShowOption(portName,addr,key)
    asynAutoConnect(portName,addr,yesNo)
    asynSetAutoConnectTimeout(timeout)
    asynWaitConnect(portName, timeout)
    asynEnable(portName,addr,yesNo)
    asynOctetConnect(entry,portName,addr,timeout,buffer_len,drvInfo)
    asynOctetRead(entry,nread)
    asynOctetWrite(entry,output)
    asynOctetWriteRead(entry,output,nread)
    asynOctetFlush(entry)
    asynOctetSetInputEos(portName,addr,eos,drvInfo)
    asynOctetGetInputEos(portName,addr,drvInfo)
    asynOctetSetOutputEos(portName,addr,eos,drvInfo)
    asynOctetGetOutputEos(portName,addr,drvInfo)
    asynRegisterTimeStampSource(portName,functionName);
    asynUnregisterTimeStampSource(portName)    

asynReport calls asynCommon:report for a specific port if portName is specified, or for all registered drivers and
interposeInterface if portName is not specified.

asynInterposeFlushConfig is a generic interposeInterface that implements flush for low level drivers that don't
implement flush. It just issues read requests until no bytes are left to read. The timeout is used for the read
requests.
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asynInterposeEosConfig is a generic interposeInterface that implements End of String processing for low level
drivers that don't.

asynSetTraceMask calls asynTrace:setTraceMask for the specified port and address. If portName is zero length
then the global trace mask is set.

asynSetTraceIOMask calls asynTrace:setTraceIOMask for the specified port and address. If portName is zero
length then the global traceIO mask is set.

asynSetTraceInfoMask calls asynTrace:setTraceInfoMask for the specified port and address. If portName is
zero length then the global traceInfo mask is set.

asynSetTraceFile calls asynTrace:setTraceFile. The filename is handled as follows:

Not specified - A NULL pointer is passed to setTraceFile. Subsequent messages are sent to errlog.• 
An empty string ("") or "stderr" - stderr is passed to setTraceFile.• 
"stdout" - stdout is passed to setTraceFile.• 
Any other string - The specified file is opened with an option of "w" and the file pointer is passed to
setTraceFile.

• 

asynSetTraceIOTruncateSize calls asynTrace:setTraceIOTruncateSize

asynSetOption calls asynCommon:setOption. asynShowOption calls asynCommon:getOption.

Thw asynOctetXXX commands provide shell access to asynOctetSyncIO methods. The entry is a character string
constant that identifies the port,addr.

where

filename - An ascii string naming a file. If null or a null string, then the output is sent to stdout.• 
level - The report level.• 
portName - An ascii string specifying the portName of the driver.• 
addr - In integer specifying the address of the device. For multiDevice ports a value of -1 means the port
itself. For ports that support a single device, addr is ignored.

• 

mask - The mask value to set. See the mask bit definitions in asynDriver.h• 
key - The key for the option desired.• 
val - The value for the option.• 
yesNo - The value (0,1) means (no,yes).• 
entry - A character string that identifies the asynOctetConnect request.• 
timeout - timeout as an integer in milliseconds. The default is 1.• 
buffer_len - length of buffer for I/O. Default=160. NOTE: output strings passed to asynOctetWrite can
have escape characters. The buffer_len must be large enough to handle escape characters. For example if
\x02 appears in an output string it counts as four characters.

• 

drvInfo - A string to pass to the driver via interface asynDrvUser.• 
nread - max number of bytes to read. Default=buffer_len.• 
flush - (0,1) means (don't, do) flush before reading. Default=0.• 
output - output string.• 

The commands asynOctetConnect, asynOctetDisconnect, asynOctetRead, asynOctetWrite, asynOctetWriteRead,
asynOctetFlush allow I/O to a device from the ioc shell. Examples are:
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asynOctetConnect("myid","A",0,1,20)
asynOctetWrite("myid","testnew")
asynOctetRead("myid")
testnew\n
asynOctetWriteRead("myid","this is test")
this is test\n
asynOctetDisconnect("myid")

asynRegisterTimeStampSource calls pasynManager->registerTimeStampSource for the specified port. The
time stamp source function must be defined as a "function" in the application dbd file.

asynUnregisterTimeStampSource calls pasynManager->runegisterTimeStampSource for the specified port.
This reverts to the default timestamp source function in asynManager.

Install and Build

Install and Build asynDriver

After obtaining a copy of the distribution, it must be installed and built for use at your site. These steps only need
to be performed once for the site (unless versions of the module running under different releases of EPICS and/or
the other required modules are needed).

Create an installation directory for the module, usually this will end with

.../support/asyn/

1. 

Place the distribution file in this directory. Then issue the commands (Unix style)

gunzip <file>.tar.gz
tar xvf <file>.tar

2. 

This creates a support <top>.

.../support/asyn/X-Y

where X-Y is the release number. For example:

.../support/asyn/3-1

3. 

Edit the config/RELEASE file and set the paths to your installation of EPICS_BASE and IPAC. IPAC is
only needed if you are building for vxWorks.

4. 

Run make in the top level directory and check for any compilation errors.5. 

Using asynDriver Components with an EPICS iocCore Application

Since asynDriver does NOT provide support for specific devices an application must obtain device specific
support elsewhere. This section only explains how to include asynDriver components.

In the configure/RELEASE file add definitions for IPAC, ASYN, and EPICS_BASE.

In the src directory where the application is built:

Add the following to Makefile

        <app>_LIBS += asyn

• 
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The application database definition file must include the database definition files for the stream package
and for any needed ASYN drivers. There are two ways that this can be done:

If you are building your application database definition file from the application Makefile you
specify the aditional database definitions there (uncomment the lines appropriate to your
application):

          include "asyn.dbd"
          #include "drvAsynSerialPort.dbd"
          #include "drvAsynIPPort.dbd"
          #include "drvVxi11.dbd"
          #include "drvGsIP488.dbd"
          #include "drvIpac.dbd"
          #include "drvUSBTMC.dbd"

♦ 

If you are building your application database definition file from the application Makefile you
specify the aditional database definitions there (again, uncomment the lines appropriate to your
application):

          xxx_DBD += asyn.dbd
          #xxx_DBD += drvAsynSerialPort.dbd
          #xxx_DBD += drvAsynIPPort.dbd
          #xxx_DBD += drvVxi11.dbd
          #xxx_DBD += drvGsIP488.dbd
          #xxx_DBD += drvIpac.dbd
          #xxx_DBD += drvUSBTMC.dbd

♦ 

• 

In the st.cmd file add:

dbLoadRecords("db/asynRecord.db", "P=<ioc>, R=<record>, PORT=<port>, ADDR=<addr>, OMAX=<omax>,
IMAX=<imax>")

You must provide values for <ioc>, <record>, <port>, <addr>, <omax>, and <imax>.

Once the application is running, medm displays for an ioc can be started by: medm -x -macro
"P=<ioc>,R=<record>" <asyntop>/medm/asynRecord.adl &

You must provide correct values for <ioc> and <record>. Once asynRecord is started, it can be connected to
different devices.

License Agreement
Copyright (c) 2002 University of Chicago All rights reserved.
asynDriver is distributed subject to the following license conditions:

SOFTWARE LICENSE AGREEMENT
Software: asynDriver

 1. The "Software", below, refers to asynDriver (in either source code, or
    binary form and accompanying documentation). Each licensee is
    addressed as "you" or "Licensee."

 2. The copyright holders shown above and their third-party licensors
    hereby grant Licensee a royalty-free nonexclusive license, subject to
    the limitations stated herein and U.S. Government license rights.
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 3. You may modify and make a copy or copies of the Software for use
    within your organization, if you meet the following conditions:
      a. Copies in source code must include the copyright notice and this
         Software License Agreement.
      b. Copies in binary form must include the copyright notice and this
         Software License Agreement in the documentation and/or other
         materials provided with the copy.

 4. You may modify a copy or copies of the Software or any portion of it,
    thus forming a work based on the Software, and distribute copies of
    such work outside your organization, if you meet all of the following
    conditions:
      a. Copies in source code must include the copyright notice and this
         Software License Agreement;
      b. Copies in binary form must include the copyright notice and this
         Software License Agreement in the documentation and/or other
         materials provided with the copy;
      c. Modified copies and works based on the Software must carry
         prominent notices stating that you changed specified portions of
         the Software.

 5. Portions of the Software resulted from work developed under a U.S.
    Government contract and are subject to the following license: the
    Government is granted for itself and others acting on its behalf a
    paid-up, nonexclusive, irrevocable worldwide license in this computer
    software to reproduce, prepare derivative works, and perform publicly
    and display publicly.

 6. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" WITHOUT WARRANTY
    OF ANY KIND. THE COPYRIGHT HOLDERS, THEIR THIRD PARTY LICENSORS, THE
    UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND THEIR
    EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
    BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
    FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, (2) DO NOT ASSUME
    ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS,
    OR USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF THE
    SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) DO NOT WARRANT
    THAT THE SOFTWARE WILL FUNCTION UNINTERRUPTED, THAT IT IS ERROR-FREE
    OR THAT ANY ERRORS WILL BE CORRECTED.

 7. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT HOLDERS, THEIR
    THIRD PARTY LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT
    OF ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
    CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND OR NATURE,
    INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS OR LOSS OF DATA, FOR ANY
    REASON WHATSOEVER, WHETHER SUCH LIABILITY IS ASSERTED ON THE BASIS OF
    CONTRACT, TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR
    OTHERWISE, EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
    POSSIBILITY OF SUCH LOSS OR DAMAGES.
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