
An Evaluation of EDM Replacement Candidates at SLAC

Alisha Babbitt, Lucas Jose Monteiro Carvalho, Matthew Gibbs,∗ and Ernest Williams, Jr.
Stanford Linear Accelerator Center

(Dated: September 15, 2015)

SLAC has historically used EDM (Extensible Display Manager) as its EPICS graphical user in-
terface technology. EDM is based on the Motif widget toolkit, which is nearing end-of-life, and
therefore EDM must be replaced. We discuss the requirements of a display manager at SLAC and
evaluate the performance and feature set of several replacement candidates against those require-
ments. For each candidate, we discuss additional work that would be required to match EDM’s
features. Finally, we discuss additional features not present in EDM that we would like to see in a
replacement.

I. DISPLAY MANAGER REQURIREMENTS AT
SLAC

For many years, SLAC has used EDM [1] as the pri-
mary graphical user interface for both the Linac Coher-
ent Light Source (LCLS) and the SPEAR3 storage ring
control systems. While SLAC is for the most part quite
happy with EDM, it is starting to show its age in a few
ways. Its reliance on the Motif widget toolkit is a liabil-
ity, as Motif is nearing end-of-life, and may not be usable
in the future. The Motif-based interface is rather dated,
and it does not visually fit in well with other applica-
tions using more modern GUI toolkits like Qt or GTK+.
EDM does not lend itself to high-quality text rendering,
often leading to either large ugly pixellated text, or tiny,
hard-to-read text. A modern user interface would not
only solve the Motif end-of-life issue, but also provide a
better experience.

SLAC uses almost every feature available in EDM, and
nearly all of the available EDM widgets appear in at
least one panel. In addition, SLAC has many critical
displays that rely on EDM’s fast drawing performance -
displays with several hundred widgets that need to up-
date at roughly 30 Hz. Operators running the acceler-
ator often have 10-30 displays open at the same time,
and need to be able to do this without using up all the
available resources of their workstations. Any suitable
replacement must be able to meet the same demands we
have for EDM in features and performance.

Creating EDM panels is done within the EDM program
itself, in an editing mode. The editing mode uses a drag
and drop, WYSIWYG interface that makes it quite easy
for anybody to make a basic panel, even beginners. SLAC
operators, even those who have little or no programming
experience, make custom panels to make operations tasks
easier. This has proven to be very beneficial, and lets
operators run the machine very efficiently using tools of
their own design. A good EDM replacement needs to
make it very easy to author basic displays.

SLAC has many basic displays, but there are also some
which are very complicated, with many nested displays,
local PVs, and macros. EDM display authors at SLAC
frequently run into limitations when trying to create com-

plex, highly interactive displays that use some of the
more complex conventions of modern graphical user in-
terfaces. These limitations sometimes stem from EDM’s
widget set, and other times stem from the difficulty in
adding client-side application logic to a display. Even
something as simple as a pop-up dialog box with a text
field can be tricky to implement in EDM. A strong re-
placement candidate must match EDM’s existing wid-
gets and features, but SLAC’s panel authors and opera-
tors also demand that a next-generation user interface do
more to enable the creation of powerful, high-level tools
for running the accelerator.

II. REPLACEMENT CANDIDATES

There are three EPICS display manager projects which
we considered in our tests: EpicsQt[2], caQtDM[3], and
CSS-BOY[4]. Our inital goal was to evaluate Qt-based
display manager options, and EpicsQt and caQtDM seem
to be the two most mature options, with the largest
amount of EPICS community support. We also com-
pare against CSS-BOY, a component in the very popular
Control System Studio package. CSS-BOY is based on
the Eclipse Rich Client Platform and Standard Widget
Toolkit for Java.

All three options have easy to use WYSIWYG editors
available for panel design. EpicsQt and caQtDM both
use Qt Designer, which is part of the standard Qt tool
set. CSS-BOY uses its own editor. Both editors feature
palettes of widgets that can be dragged onto a blank
window.

A. EpicsQt

EpicsQt is a Qt framework developed at the Australian
Synchrotron. EpicsQt was designed as a successor to
both EDM and MEDM, but not necessarily a direct re-
placement to either. As such, it does not try to com-
pletely duplicate the EDM feature set or widget set.
EpicsQt provides an EPICS aware widget set which can



2

be used in simple, code-free, EDM-style displays, or in
custom C++ applications.

B. caQtDM

caQtDM is a Qt framework developed at the Paul
Scherrer Institute (PSI). caQtDM was explicitly devel-
oped as a replacement for MEDM [5]. MEDM is another
display manager, similar to EDM in many ways, but does
not have all of EDM’s features, so caQtDM does not have
all of EDM’s features either. caQtDM’s architecture con-
sists of widgets with no EPICS capability, driven by a
main program which performs all the EPICS operations.

C. CSS-BOY

CSS-BOY is part of the Control System Studio (CSS)
package, which is a collection of control system tools
based on the Eclipse Rich Client Platform. CSS is devel-
oped by a collaboration of many large accelerator facili-
ties: DESY, SNS, BNL, FRIB, and ITER. It has strong
support in the EPICS community.

III. EVALUATION OF REPLACEMENT
CANDIDATES

A. Widget Set Evaluation

EDM has a widget set that is well-suited for running
a typical accelerator. It provides widgets for visualizing
and manipulating analog values using graphical meters
and sliders in addition to standard user interface ele-
ments like buttons, text fields, and labels. It has widgets
for plotting signals vs. time, plotting waveform signals,
and displaying images from cameras and other 2D sensor
arrays. EDM also includes a few widgets that work as
user interface controls - the most notable is the “menu
mux”, which can change custom variables (“macros” in
EDM parlance) used by other widgets on the display.

For each of the 47 EDM widgets, we found the clos-
est counterpart in the widget sets for the candidate pro-
grams, if a counterpart existed at all. For each candidate,
a table was created listing the EDM widget, its counter-
part widget, and any notes about differences in widget
behavior. For each EDM widget, a rating is assigned:
“green” if a counterpart exists with only minor cosmetic
differences or no differences at all, “yellow” if the coun-
terpart has cosmetic or behavioral differences, and “red”
if there is no clear counterpart, if the counterpart is miss-
ing critical functionality, or if the widget has bugs that
make it unfit for use.

Two of the display manager candidates, caQtDM and
CSS, come with automatic EDM conversion scripts,

which take EDM files as input, and convert them to the
new display manager’s format. These conversion scripts
can alleviate some (but not all) of the repetitive work
involved in converting the large number of existing EDM
displays. Of course, these scripts can only convert EDM
widgets that have a counterpart in the new display man-
ager, and all the features of the EDM widget might not
be implemented in the new display manager.

Under our rating system, it should be possible to use an
automatic conversion script to reliably convert an EDM
display with only “green” widgets, with only cosmetic
changes needed to make the new display usable. An
EDM display with “yellow” widgets might need some
manual re-design after conversion to make it operable,
or alternatively, the widget could be improved to get it
into a “green” state. An EDM display that uses “red”
widgets would not be possible to make, without adding
functionality to existing widgets, or creating a new wid-
get entirely.

Thirteen of EDM’s widgets are unused at SLAC, or are
used very rarely. For these widgets, we note the closest
counterpart, but do not rate the widget. Note that this
leaves 34 widgets that need a counterpart.

Brief summaries are below. The full tables are avail-
able in appendixes A, B, and C.

1. EpicsQt Widget Set

In EpicsQt’s widget set, 19 EDM widgets have a
“green” counterpart, 8 EDM widgets have a “yellow”
counterpart, and 7 EDM widgets are “red”, and have
no counterpart, or an incomplete counterpart. In our
opinion, the three most significant EDM widgets without
a good EpicsQt counterpart are the Menu Mux widget,
the Symbol widget, and the X-Y Graph. Menu Mux and
Symbol have no EpicsQt counterparts at all. The X-Y
Graph has two partial EpicsQt counterparts: “QEPlot”
and “QEPlotter”, but neither of them support all the
features of X-Y Graph which are used at SLAC.

2. caQtDM Widget Set

caQtDM’s widget set is very similar to EDM’s. 23
EDM widgets have a “green” caQtDM counterpart, 9
EDM widgets have a “yellow” caQtDM counterpart, and
2 EDM widgets are “red”. The two “red” EDM widgets
are the Symbol widget, and Menu Mux widget.

3. CSS-BOY Widget Set

CSS-BOY’s widget is also a close match to EDM. 23
EDM widgets have a “green” CSS counterpart, 9 widgets
have a “yellow” counterpart, and two widgets are “red”.



3

The two “red” widgets are the Menu Mux widget, and
Coef Table.

B. Performance Evaluation

We used two quanitative metrics to evaluate the perfor-
mance of the display manager candidates: memory usage
and CPU usage. We also discuss the results of a perfor-
mance study done by Farnsworth et al [6] at Argonne
National Laboratory, which measured the graphical up-
date rates for the candidates.

1. Multiple Display Test

Our test measures the display manager resource usage
as a function of the number of displays open. For each
display manager, one instance was opened, then one dis-
play opened. After collecting an average of CPU and
memory usage, another copy of the display is opened,
and the measurement is repeated. We continue this pro-
cess, incrementing the number of displays until 100 dis-
plays are on screen simultaneously. For reference, LCLS
operators often have somewhere between 10 and 30 pan-
els open simultaneously. Figure 1 shows the results for
CPU usage, and Figure 2 shows the results for memory
usage. EDM uses very little memory and CPU, even
with large numbers of displays open. caQtDM and epic-
sQt both show reasonable CPU usage and memory usage,
certainly within acceptable bounds for modern worksta-
tions. CSS uses a very large amount of CPU (even with
one screen CPU usage is very high). CSS memory usage
is also much higher than the other options (although with
tens of gigabytes of RAM being common, CSS is still not
close to the limits of system memory).

2. Graphics Update Rate

A group at the APS at Argonne National Labora-
tory investigated several display managers as potential
MEDM replacements. As part of their study, they cre-
ated panels with hundreds of widgets connected to PVs
that updated at 10 Hz. They recorded the number of wid-
gets they could display at the same time without skip-
ping any of the 10 Hz PV updates (the lossless widget
number), as well as the number of widgets that could be
displayed before the user interface completely failed (the
max widget number). The update rate data is given in
Table I.

The results from APS suggest that all of the options are
viable even for displays with hundreds of frequently up-
dating widgets. Our own experience doesn’t completely
agree with that. For each candidate, we created an LCLS
“orbit display”, modeled after a very heavily used EDM

display at LCLS. The orbit display represents the X, Y,
and intensity signals from every LCLS Beam Position
Monitor as a set of three bar widgets. There are 176
BPMs displayed, for a total of 528 bar widgets on a sin-
gle panel. These bar widgets are connected to PVs that
update at 10 Hz.

We found that the LCLS orbit display had very poor
performance in both caQtDM and EpicsQt, with screen
update rates clearly less than 10 Hz. CSS-BOY’s perfor-
mance with the orbit display was noticably better than
the Qt-based options, but worse than that of EDM. Un-
fortunately, we did not devise a good way to quantita-
tively measure the update rate.

During our exploration of graphics performance and
Qt, we created our own LCLS orbit display in PyQt [7]
(a set of Qt bindings for the Python programming lan-
guage), with performance similar to that of EDM. It is
our conclusion that using Qt does not rule out the possi-
bility of high performance graphics, but developers need
to be careful if they want to achieve it.

IV. WORK NEEDED TO MATCH EDM

There is no one-to-one ‘drop-in’ replacement for EDM
- every option would require some effort to modify con-
verted displays to work in the new display manager, or
modify the display manager to more-closely reproduce
the behavior of EDM, or (most likely) both.

SLAC’s existing 4688 EDM display files would need
to be converted to the new display manager. In our ex-
perience, recreating a fairly complicated EDM display
(with 10 different kinds of widgets, and about 50 total
widgets) took about an hour. CSS and caQtDM both in-
clude conversion scripts to automate the conversion from

0 20 40 60 80 100
0

50

100

150

200

250

C
P

U
 U

sa
g

e 
(P

er
ce

n
ta

g
e)

Number of Simultaneous Displays Open

CPU Usage with Many Displays Open

 

 

EDM caQtDM epicsQt CSS

FIG. 1. CPU Usage for each of the candidates, as well as
EDM, as a function of simultaneous number of displays open.



4

EDM. We found that using these scripts to convert a dis-
play produced mostly-functional results, but still needed
nearly an hour of work to test the converted display, and
clean up graphics issues. Some of this work could be
eliminated with improvements to the conversion scripts.
For epicsQt, a completely new conversion script would
have to be built. Even with a conversion script, the pro-
cess cannot be fully automated, as each converted display
needs to be tested to ensure functionality.

Automatic conversion of a display to a new display
manager will fail if there is not an equivalent widget for
every EDM widget. As discussed above, there are missing
widgets for every candidate. There are two options for
dealing with this problem: re-design all panels that use
the widget, or build a replacement widget. For rarely-
used widgets, it may be preferable to re-design the panel.
If the EDM widget is frequently used, it makes more sense
to build a replacement widget for it.

For the two Qt-based options, we investigated the work
required to create a replacement widget. Qt widgets are
written in C++. For both epicsQt and caQtDM, the av-
erage widget is about 300 lines of code, and complicated
widgets are closer to 1200 lines. For caQtDM, adding a
new widget also requires modifications in caQtDMLib,
which handles EPICS communication for the widgets.
The work required to create a new widget in CSS-BOY
was not investigated. As discussed in Section III A, the
number of missing widgets vary among the candidates,
with epicsQt having the most widgets needing replace-
ment, and caQtDM and CSS-BOY tied for fewest number
of widgets needing replacement.

0 20 40 60 80 100
0

100

200

300

400

500

M
em

o
ry

 U
sa

g
e 

(M
eg

ab
y

te
s)

Number of Simultaneous Displays Open

Memory Usage with Many Displays Open

 

 

EDM caQtDM epicsQt CSS

FIG. 2. Memory Usage for each of the candidates, as well as
EDM, as a function of simultaneous number of displays open.

V. ADDITIONAL FEATURES BEYOND EDM

Finding a replacement that matches EDM’s feature set
is important, but simply duplicating EDM would be a
missed opportunity to improve upon its shortcomings.
While gathering requirements from the many groups at
SLAC that use EDM, we were repeatedly presented with
areas where users felt EDM needed improvement.

A. Window Management

A common problem with EDM at SLAC is that most
tasks require operators to go several levels deep into a
hierarchy of displays, and each new level opens a new
window. After running the machine for a while, very
large numbers of open displays accumulate unless the
operator is diligent about closing windows. A more ele-
gant window management system would be beneficial to
users. caQtDM, being a clone of MEDM’s functionality,
has no new window management features. EpicsQt and
CSS-BOY both offer a tabbed-window system, that op-
erates similar to most modern web browsers, which can
significantly cut down on the number of windows open
at once. EpicsQt’s implementation feels like a bit of an
afterthought, and has sometimes unpredictable behavior:
related display buttons configured to open new displays
as tabs often open in a new window instead. CSS-BOY
has better tab support, but weaker support for multiple
windows open at the same time, which is still useful in
many instances.

Another way to cut down on the window manage-
ment burden would be to make navigation of the con-
trol system more efficient. Web browsers have a very
good model: In addition to links between pages, a na-
givation stack lets you move backward and forward be-
tween recently opened pages, and an address bar to let
you go directly to a particular page. The ubiquity of
the web means that nearly everybody is already familiar
with this model. Unfortunately, none of the replacement
candidates we studied use a system like this.

TABLE I. Number of widgets displayed on a panel before the
panel skips 10 Hz updates (lossless count), and number of
widgets displayed before the panel is non-operational (max
count), as measured by Farnsworth et al.

Display Manager Lossless Widget Count Max Widget Count

EDM 3200 14288

caQtDM 1200 1660

EpicsQt 400 1440

CSS-BOY 800 984



5

B. Support for Building Complex Applications

EDM displays are very simple: they are a collection
of widgets which redraw themselves when a PV changes.
This simplicity makes EDM very easy to learn, but also
makes it unsuitable for building applications that require
more client-side computations, or more business logic.
While most of the time, business logic belongs in the
IOC, there are legitimate instances where client-side com-
putation is the right choice. In these cases, SLAC has
typically abandonded EDM for other, more general pur-
pose development frameworks, like MATLAB, Java, or
Python, where building EPICS functionality into widgets
is time-consuming and potentially buggy. A SLAC-wide
standard framework for building high-level applications
with a mix of EPICS-aware widgets and custom code
could save significant development time, and give users a
way to make the kinds of applications that make it easier
to perform complex operating or analysis tasks.

EpicsQt and caQtDM can both be embedded into cus-
tom C++ applications, but neither are particularly easy,
and are out of reach for users with limited programming
experience. CSS-BOY includes a javascript-based script-
ing system, where each widget has an embedded script
which can contain business logic. These scripts allow for
great flexibility, but introduce performance problems as
the number and complexity of scripts increases. CSS’s
developers discourage the use of all but the simplest
scripts.

Several groups approached us with the suggestion that
they would like to be able to use the EPICS-aware widget
set of these frameworks inside PyQt, which has a large
SLAC user base. This is only possible with the two Qt-
based options. PyQt has a tool called “SIP” [8] which
can be used to create Python bindings for widgets writ-
ten in C++ (like those of caQtDM and EpicsQt). SIP
has a steep learning curve, but it should be possible to
create bindings for the caQtDM and EpicsQt widget sets.
While learning the procedure, we created a Python bind-
ing for a very simple C++ widget in about two days. Due
to the way caQtDM is implemented, using the widgets
in PyQt applications would take more work than simply
creating bindings, because caQtDM’s main program han-
dles all the EPICS communication - not the widgets. An
alternative way to establish EPICS communication and
update the widgets would need to be built into the PyQt
application.

VI. CONCLUSIONS

Our study of the existing Qt-based display managers
leads us to conclude that Qt is a good foundation for a
display manager. Qt itself is powerful and performant,
straightforward to use, and has a strong support commu-
nity. However, we find that in their current state, none

of the existing Qt-based options meet all of the require-
ments our users demand.

A. EpicsQt

Of the three options, EpicsQt would take the most
work to replicate the EDM widgets we need. EpicsQt’s
performance is adequate for most tasks, but it strug-
gles when drawing hundreds of rapidly-updating widgets.
EpicsQt has a feature for organizing displays as tabs,
which could make window management easier, but this
feature did not work as expected. The ability to create
complex applications with client-side logic is possible in
EpicsQt, by using their “QCa” library and the EpicsQt
widgets in a C++ application, but this is not a very at-
tractive option for most of our users, who want the ease
and flexibility of a scripting language.

B. caQtDM

caQtDM comes quite close to duplicating EDM’s func-
tionality and widget set, with only two EDM widgets that
would need to be recreated. caQtDM was the faster of the
two Qt based solutions, and has acceptable memory and
CPU usage even under high load. Much like EpicsQt, it
had problems with handing hundreds of quick widget up-
dates. Unfortunately caQtDM is lacking many of the new
features our users require: it offers no improvements to
window management over EDM, and making a full ap-
plication again requires including the caQtDM widgets
and the caQtDM library in a C++ application.

C. CSS-BOY

CSS-BOY is an alternative to a Qt-based display man-
ager. Its widget set is very similar to EDM’s (our analysis
rates it the same as caQtDM). CSS-BOY had the high-
est memory and CPU usage of the three candidates by a
considerable margin, but was also the fastest at updating
very large numbers of widgets. Start-up time was much
slower in CSS-BOY than in the other options. CSS-BOY
has a tabbed window system, which helps cut down on
window clutter. CSS-BOY also has scripting support,
but these scripts are somewhat limited in their capabili-
ties, and are a frequent source of performance problems.
It would be difficult to create scripted CSS-BOY displays
to replace existing MATLAB or PyQt applications used
at LCLS.

∗ E-Mail Address: mgibbs@slac.stanford.edu



6

[1] J. Sinclair, “Extensible Display Manager,” http:

//ics-web.sns.ornl.gov/edm/, [Online; accessed 10-
August-2015].

[2] G. Jackson, A. Owen, A. Rhyder, A. Starritt, and R. Fer-
nandes, “EPICS Qt Framework,” http://sourceforge.

net/projects/epicsqt/, [Online; accessed 11-August-
2015].

[3] A. Mezger and H. Brands, “caQtDM - a medm re-
placement based on QT,” http://epics.web.psi.ch/

software/caqtdm/, [Online; accessed 11-August-2015].
[4] C. Collaboration, “CSS - Control System Studio,” http:

//controlsystemstudio.org/index.html, [Online; ac-
cessed 11-August-2015].

[5] A. Mezger and H. Brands, in Proceedings of
ICALEPCS2013, ICALEPCS (San Francisco, 2013)
pp. 864–866.

[6] R. Farnsworth, J. P. Hammonds, B. Pausma, C. Suarez,
A. Rhyder, and A. C. Starritt, in Proceedings of
ICALEPCS2013, ICALEPCS (San Francisco, 2013) pp.
547–549.

[7] Riverbank Software, “What is PyQt?” https://www.

riverbankcomputing.com/software/pyqt/intro (), [On-
line, accessed 12-August-2015].

[8] Riverbank Software, “What is SIP?” https://www.

riverbankcomputing.com/software/sip/intro (), [On-
line, accessed 12-August-2015].



7

Appendix A: EpicsQt Widget Analysis

EDM Widget EpicsQt Counterpart Notes

Lines QEShape Limited to 10 points in QEShape.

Rectangle QESimpleShape

Circle QESimpleShape

Arc QEShape

Static Text QESubstitutedLabel

Text w. Reg. Exp. None Text w. Reg. Exp. is unused at SLAC.

Embedded
Window

QEForm

PNG Image QEFileImage QEFileImage takes a filename from a PV. You cannot specify a plain
string as the filename.

GIF Image QEFileImage QEFileImage takes a filename from a PV. You cannot specify a plain
string as the filename.

Dynamic Symbol None No epicsQt counterpart, but this widget is unused, at least in LCLS
EDM panels.

Meter QEAnalogProgressBar Set the ‘mode’ property to ‘meter.’

Bar QEAnalogProgressBar Even with alarm-sensitive mode off, always resets the background color
to some default, regardless of what you choose. You cannot have a
bar with an origin not at the top or bottom.

Message Box None The EDM Message Box widget has no epicsQt counterpart. This
widget is only used in one LCLS EDM Panel, which was used for
vacuum comissioning purposes. Not essential for SLAC’s purposes.

X-Y Graph QEPlotter or QEPlot QEPlotter for waveforms, QEPlot for striptools or waveforms. There
is no mode to do a cartesian plot (where one variable controls X for
a single data point and another controls Y). QEPlot breaks if you try
to mix waveform PVs and Scalar PVs. There is no way to set line
thickness on QEPlot or QEPlotter. QEPlotter only supports auto-
scaling right now, which is annoying. The scales keep changing, so the
plot sort of jumps around. If you screw up and put a bad value into
X and A, it can cause designer to lock up.

Text Monitor QELabel No ‘Clip to LOPR/HOPR’ feature. QELabel refreshes very quickly,
which can make it hard to read for PVs that update very rapidly. EDM
Text Monitor seems to do some kind of rate limiting on its updates.

PV Inspector QEPVProperties Unused at SLAC.

Table None The EDM Table widget uses a PV as a filename, and tries to open a
text file, and display the contents of that file as a table. There is no
epicsQt replacement. This widget is not used in very many panels,
but the panels that have it are used quite frequently (BCS/PPS CUD
is a big one).

Coef Table QETable QETable cannot show titles for each row (which corresponds to an
element in the array PV).

Indicator QEAnalogProgressBar Set the ‘mode’ property to ‘Scale.’

Text Update QELabel Alarm coloring changes the background on QELabel, but changes the
text color on Text Update. Cannot choose a separate PV for alarm
coloring.

Reg Text Update None The Reg Text Update widget lets you define a regular expression to
show or hide the text. While this widget is used frequently, the regex
feature of it is not used in any LCLS panel, so a conversion to QELabel
would work fine.

Byte QEBitStatus

Hoff Video QEImage



8

Multi-line Text
Update

None Multi-line text update is a text update that can display multiple lines
of text, in the case that it is displaying a long string PV with line
breaks. There is no direct epicsQt counterpart, but the multi-line
feature of the EDM widget is not used in any LCLS EDM panels, so
it can be safely replaced with QELabel.

SLAC XY Graph QEPlotter or QEPlot SLAC XY Graph is functionally the same as the X-Y Graph widget,
with one difference: if there is a mix of valid and invalid PVs specified
for the traces, the valid ones will still plot. QEPlot works the same
way - invalid PVs don’t stop valid ones from working. See notes for
X-Y Graph.

Older optimized
version of Bar

QEAnalogProgressBar The ‘Older optimized version of Bar’ widget is an older version of the
widget that had extremely fast drawing performance. It is used in
some LCLS EDM panels to show very quickly updating values, like
10 Hz data from BPMs. The QEAnalogProgressBar widget is much
slower to draw than this fast bar widget.

Symbol None The Symbol class lets you define an array of groups of graphics primi-
tives, and display a different item from that array based on the value of
a PV. It is used in many LCLS panels, to graphically represent things
like a PPS door. There is no straightforward epicsQt counterpart.

Animated Symbol None An animated version of the Symbol class, where there are additional
PVs that control the position and rotation of the symbol. There is
no epicsQt counterpart for this widget, but it is unused in any LCLS
EDM Panels.

Text Control QELineEdit The Text Control widget lets you click on the text to edit it. A pop-
up dialog box is displayed that lets you change the value of the PV.
epicsQt doesn’t have a widget that duplicates this exact behavior, but
it does have QELineEdit, which is a standard text entry field.

Text Entry QELineEdit

Slider QESlider QESlider has the save/restore buttons like the EDM version. Graph-
ically, it looks very different, which may make converted panels look
strange.

Motif Slider QESlider Doesn’t look too much like the Motif Slider, but works similarly. Can’t
completely disable the scale. There is no way to set the click increment
value.

Button QECheckBox or QEPushButton The EDM Button widget has two modes: Push and Toggle. To dupli-
cate a Push mode button use QEPushButton. To duplicate a Toggle
mode button use QECheckBox.

Menu Button QEComboBox

Radio Box QERadioGroup

Message Button QECheckBox or QEPushButton EDM’s Message Button is like the ‘Button’ widget, but it has a few
additional features. These don’t exist in epicsQt, like ‘Close Display
on Press’. More investigation is needed to see if we need these features.

Up/Down Button None EDM’s Up/Down button lets you increment or decrement the value
of a PV with left and right mouse buttons. It is only used in four
LCLS panels. This button is extremely confusing to use, and probably
shouldn’t be duplicated.

Ramp Button None EDM’s Ramp button continuously changes the value of a PV from a
minumum value to a maximum. There is no epicsQt counterpart. This
button is only used in one LCLS EDM Panel. The ramp button func-
tionality could be duplicated with a shell script plus a QEPushButton.

Freeze Button None The Freeze Button freezes all activity on an EDM panel. There is no
epicsQt counterpart. This button is rarely used in LCLS panels, and
is usually just a convenience to make it easier to take a screenshot of
the panel.



9

Exit Button QPushButton The EDM Exit Button closes the current panel. It also has an option
to close the parent panel, if it is used in an embedded window, and
can also exit the whole EDM program. It is used on a huge number
of LCLS panels, but the functionality is really more of a minor conve-
nience than an essential feature. The user can just close the window
with the standard window ‘close’ button (the ‘X’ button at the top of
the window), or use a QPushButton, and connect the clicked() signal
to the parent widget’s close() slot.

Menu Mux None Menu Mux is used in many panels, and there is no direct replacement
for it. Menu Mux lets you create a drop-down menu with multiple
choices. Each choice sets values for multiple macro variables.

Related Display QEPushButton Use the ‘guiFile’ field. The ‘creationOption’ property might be very
useful (lets you open displays in tabs and docks), but it didn’t work
properly in testing.

Shell Command QEPushButton Use the ‘Program’ and ‘Arguments’ fields.

Choice Button QERadioGroup There is no epicsQt widget that uses the same visual style as the
Choice Button, but QERadioGroup duplicates the functionality.

Multi-line Text
Entry

QELineEdit The Multi-line Text Entry widget lets you change a multi-line text
string PV. This widget is used in one LCLS EDM panel (a test panel
for LI28 LLRF), and on that panel it could be replaced with a single
line text entry. So, for our purposes, QELineEdit is a fine replacement
option.

Triumf Slider QEAnalogSlider Unclear what the difference is between Triumf slider and Motif slider.
QEAnalogSlider is a decent replacement for the Motif Slider (see above
notes for Motif slider).

Multi-Slider None Works like the EDM Slider class, but has controls for two PVs on the
same slider. Used on a couple of EDM panels for oscilloscope control.
Could be replaced with two separate sliders.

TABLE II: Analysis of the EpicsQt widget set, as compared to EDM.

Appendix B: caQtDM Widget Analysis

EDM Widget caQtDM Counterpart Notes

Lines caPolyLine In Qt Designer, you can’t directly draw the lines, you have to specify
a set of point coordinates.

Rectangle caGraphics In the ‘form’ attribute of caGraphics, use the ‘Rectangle’ option.

Circle caGraphics In the ‘form’ attribute of caGraphics, use the ‘Circle’ option.

Arc caGraphics In the ‘form’ attribute of caGraphics, use the ‘Arc’ option.

Static Text caLabel
Text w. Reg. Exp. caLabel Text w. Reg. Exp. lets you show or hide a text label based on a regular

expression evaluation of the label’s contents. This widget is used in a
large number of LCLS EDM panels, but the regular expression feature
is not used by any LCLS panels. In all SLAC use-cases, this could be
replaced by caLabel.

Embedded
Window

caInclude The Embedded Window widget lets you embed one EDM file within
another. You can specify the filename via a PV, hard-coded string,
or it can be used with the EDM ‘Menu Mux’ widget. In caQtDM,
caInclude does not let you specify the file via a PV, and it does not have
a Menu Mux. Behavior very similar to ‘Menu Mux’ can be created
with a QTabWidget which contains multiple caInclude widgets.

PNG Image caImage

GIF Image caImage

Dynamic Symbol None The Dynamic Symbol class lets you build simple animated graphics
objects out of graphics primitives, like lines, rectangles, etc. This
widget has no caQtDM counterpart, but it is not used in any LCLS
EDM Panels, so this isn’t a big issue.



10

Meter caMeter caQtDM has two very similar widgets that both work like EDM’s
Meter widget. In the case of a ‘Total Display Angle’ of 180 degrees,
which is commonly used in LCLS EDM Panels, the caMeter widget
takes up more space, because it always draws a full circle. Converted
displays that use this widget may need to be slightly redesigned.

Bar caThermo The EDM Bar widget has an ‘origin’ property that can be set to any
value. caThermo only lets you set the origin to a few fixed values
(bottom of bar, top of bar, center of bar), via the ‘type’ property.
We could not find any good examples of any LCLS EDM panels that
utilize this extra flexibility, but it is hard to determine for sure that
it is completely unused. The conversion script probably won’t know
how to set the ‘type’ value properly.

Message Box None The EDM Message Box widget has no caQtDM counterpart. This
widget is only used in one LCLS EDM Panel, which was used for
vacuum comissioning purposes. Not essential for SLAC’s purposes.

X-Y Graph caCartesianPlot or caStripPlot

Text Monitor caLineEdit Text Monitor has two features that caLineEdit doesn’t duplicate: ‘Clip
to LOPR/HOPR’, and ‘Null PV’. ‘Null PV’ is effectively unused in
LCLS panels (it is usually set to the same PV as the ‘PV’ property,
or not set at all). ‘Clip to LOPR/HOPR’ is used in many panels, but
it is not clear that it is essential. There is no ability to set a separate
PV for alarm coloring.

PV Inspector QEPVProperties There is no caQtDM replacement for the PV Inspector widget, but
PV Inspector is not used in any LCLS EDM panels.

Table None The EDM Table widget uses a PV as a filename, and tries to open a
text file, and display the contents of that file as a table. There is no
caQtDM replacement. This widget is not used in very many panels,
but the panels that have it are used quite frequently (BCS/PPS CUD
is a big one).

Coef Table caWaveTable The Coef Table shows the individual values of a waveform PV as rows
in a table. The caQtDM counterpart caWaveTable defaults to showing
each value in a new column, but by changing the number of columns
and rows you can duplicate the EDM default. caWaveTable does not
let you define a custom label for each element.

Indicator caLinearGauge caLinearGauges with the scale labels enabled look bad if you aren’t
careful to keep the right aspect ratio.

Text Update caLineEdit
Reg Text Update None The Reg Text Update widget lets you define a regular expression to

show or hide the text. While this widget is used frequently, the regex
feature of it is not used in any LCLS panel, so a conversion to caLi-
neEdit would work fine.

Byte caByte

Hoff Video caCamera In the caCamera widget, the value of the ‘channelCode’ PV must be set
to 1 for a grayscale camera. Strangely, the value of the ‘channelBPP’
PV must be set to 1 for an 8 bit image. If that is because ‘BPP’ is
‘Bytes Per Pixel’ instead of ‘Bits Per Pixel’, we might have problems
with some cameras where the number of bits per pixel is not divisible
by 8.

Multi-line Text
Update

caLineEdit Multi-line text update is a text update that can display multiple lines
of text, in the case that it is displaying a long string PV with line
breaks. There is no direct caQtDM counterpart, but the multi-line
feature of the EDM widget is not used in any LCLS EDM panels, so
it can be safely replaced with caLineEdit.

SLAC XY Graph caCartesianPlot or caStripPlot SLAC XY Graph is functionally the same as the X-Y Graph widget,
with one difference: if there is a mix of valid and invalid PVs specified
for the traces, the valid ones will still plot. See notes for X-Y Graph.



11

Older optimized
version of Bar

caThermo The ‘Older optimized version of Bar’ widget is an older version of the
widget that had extremely fast drawing performance. It is used in
some LCLS EDM panels to show very quickly updating values, like 10
Hz data from BPMs. The caThermo widget is much slower to draw
than this fast bar widget.

Symbol None The Symbol class lets you define an array of groups of graphics prim-
itives, and display a different item from that array based on the value
of a PV. It is used in many LCLS panels, to graphically represent
things like a PPS door. There is no straightforward caQtDM counter-
part, although the functionality can be duplicated with many stacked
caFrames containing caGraphics items, and visibility calculations on
each caFrame.

Animated Symbol None An animated version of the Symbol class, where there are additional
PVs that control the position and rotation of the symbol. There is
no caQtDM counterpart for this widget, but it is unused in any LCLS
EDM Panels.

Text Control caTextEntry The Text Control widget lets you click on the text to edit it. A pop-
up dialog box is displayed that lets you change the value of the PV.
caQtDM doesn’t have a widget that duplicates this exact behavior,
but it does have caTextEntry, which is a standard text entry field.

Text Entry caTextEntry

Slider caSlider The EDM Slider widget has a few features that the caSlider doesn’t
duplicate: There is an option for a built-in save and restore button in
the EDM version, and a built-in readback label. These features could
be recreated in caQtDM by using other widgets in concert with the
slider. Visually, the EDM slider looks very different than caSlider.

Motif Slider caSlider

Button caMessageButton or caToggleButton The EDM Button widget has two modes: Push and Toggle. To du-
plicate a Push mode button use caMessageButton. To duplicate a
Toggle mode button use caToggleButton. In EDM, if you use the but-
ton with an enum PV, it assumes the enum has a 0 value and a 1
value. caQtDM doesn’t make that assumption. In both modes, the
EDM Button has a feature where the button’s label text is the Enum
string for the PV. This feature does not exist in caQtDM. More in-
vestigation needs to be done to see if these differences will be a big
stumbling block in converting EDM panels.

Menu Button caMenu

Radio Box caChoice

Message Button caMessageButton or caToggleButton EDM’s Message Button has a toggle mode and a push mode. To
get push mode behavior, use caMessageButton. To get toggle mode
behavior, use caToggleButton. Message Button has a few features
that don’t exist in caQtDM, like ‘Close Display on Press’.

Up/Down Button None EDM’s Up/Down button lets you increment or decrement the value of
a PV with left and right mouse buttons. It is only used in four LCLS
panels. This button is confusing to use, and probably shouldn’t be
duplicated.

Ramp Button None EDM’s Ramp button continuously changes the value of a PV from a
minumum value to a maximum. There is no caQtDM counterpart.
This button is only used in one LCLS EDM Panel. The ramp button
functionality could be duplicated with a shell script plus a caShell-
Command button.

Freeze Button None The Freeze Button freezes all activity on an EDM panel. There is no
caQtDM counterpart. This button is rarely used in LCLS panels, and
is usually just a convenience to make it easier to take a screenshot of
the panel.



12

Exit Button QPushButton The EDM Exit Button closes the current panel. It also has an option
to close the parent panel, if it is used in an embedded window, and
can also exit the whole EDM program. It is used on a huge number
of LCLS panels, but the functionality is really more of a minor conve-
nience than an essential feature. The user can just close the window
with the standard window ‘close’ button (the ‘X’ button at the top of
the window), or use a QPushButton, and connect the clicked() signal
to the parent widget’s close() slot.

Menu Mux None Menu Mux is used in many panels, and there is no direct replace-
ment for it. Menu Mux lets you create a drop-down menu with mul-
tiple choices. Each choice sets values for multiple macro variables.
caQtDM’s manual mentions making “soft PVs”, which you could use
along with the caMenu widget to get most of the same functionality,
but not all of it.

Related Display caRelatedDisplay

Shell Command caShellCommand

Choice Button caChoice
Multi-line Text
Entry

caTextEntry The Multi-line Text Entry widget lets you change a multi-line text
string PV. This widget is used in one LCLS EDM panel (a test panel
for LI28 LLRF), and on that panel it could be replaced with a single
line text entry. So, for our purposes, caTextEntry is a fine replacement
option.

Triumf Slider QEAnalogSlider Unclear what the difference is between Triumf slider and Motif slider.
caSlider is a good replacement for the Motif Slider (see above notes
for Motif slider).

Multi-Slider None Works like the EDM Slider class, but has controls for two PVs on the
same slider. Only used on a couple of EDM panels for oscilloscope
control. Could be replaced with two separate caSliders.

TABLE III: Analysis of the caQtDM widget set, as compared to EDM.

Appendix C: CSS Widget Analysis

EDM Widget CSS Counterpart Notes

Lines Polyline

Rectangle Rectangle

Circle Ellipse

Arc Arc

Static Text Label No ‘Alarm Sensitive’ option. Might be possible to do it with a script.
Text w. Reg. Exp. caLabel Text w. Reg. Exp. lets you show or hide a text label based on a regular

expression evaluation of the label’s contents. This widget is used in a
large number of LCLS EDM panels, but the regular expression feature
is not used by any LCLS panels. In all SLAC use-cases, this could be
replaced by CSS Label.

Embedded
Window

Linking Container

PNG Image Image

GIF Image Image

Dynamic Symbol None The Dynamic Symbol class lets you build simple animated graphics
objects out of graphics primitives, like lines, rectangles, etc. This
widget has no CSS counterpart, but it is not used in any LCLS EDM
Panels, so this isn’t a big issue.

Meter Meter

Bar Progress Bar

Message Box None The EDM Message Box widget has no CSS counterpart. This widget
is only used in one LCLS EDM Panel, which was used for vacuum
comissioning purposes. Not essential for SLAC’s purposes.



13

X-Y Graph XY Graph

Text Monitor Text Update Cannot choose a separate PV for alarm coloring.

PV Inspector No widget, built into CSS There is no CSS replacement for the PV Inspector widget, but a PV
Inspector-like feature is built into CSS.

Table None The EDM Table widget uses a PV as a filename, and tries to open a
text file, and display the contents of that file as a table. There is no
CSS replacement. This widget is not used in very many panels, but
the panels that have it are used quite frequently (BCS/PPS CUD is a
big one).

Coef Table None The Coef Table shows the individual values of a waveform PV as rows
in a table. There is no CSS counterpart.

Indicator Progress Bar Set ‘Indicator Mode’ to ‘yes’.

Text Update Text Update Cannot choose a separate PV for alarm coloring.

Reg Text Update None The Reg Text Update widget lets you define a regular expression to
show or hide the text. While this EDM widget is used frequently at
SLAC, the regex feature of it is not used in any LCLS panel, so a
conversion to Text Update would work fine.

Byte Byte Monitor

Hoff Video Intensity Graph

Multi-line Text
Update

None Multi-line text update is a text update that can display multiple lines
of text, in the case that it is displaying a long string PV with line
breaks. There is no direct CSS counterpart, but the multi-line feature
of the EDM widget is not used in any LCLS EDM panels, so it can be
safely replaced with Text Update.

SLAC XY Graph XY Graph

Older optimized
version of Bar

Progress Bar The ‘Older optimized version of Bar’ widget is an older version of the
widget that had extremely fast drawing performance. It is used in
some LCLS EDM panels to show very quickly updating values, like 10
Hz data from BPMs. The Progress Bar widget is not as fast as the
EDM widget, but it is close.

Symbol Multistate Symbol Monitor CSS’ Symbol classes use images (PNG, GIF, etc) for each state, rather
than graphics primitives, which would make automatic conversion a
little hard.

Animated Symbol None An animated version of the Symbol class, where there are additional
PVs that control the position and rotation of the symbol. There is no
CSS counterpart for this widget, but it is unused in any LCLS EDM
Panels.

Text Control Text Input The Text Control widget lets you click on the text to edit it. A pop-up
dialog box is displayed that lets you change the value of the PV. CSS
doesn’t have a widget that duplicates this exact behavior, but it does
have Text Input, which is a standard text entry field.

Text Entry Text Input

Slider Scaled Slider The step size cannot be changed at runtime. Does not have
save/restore buttons.

Motif Slider Scaled Slider Step size cannot be changed at runtime.

Button Action Button

Menu Button Menu Button

Radio Box Radio Box

Message Button Action Button Need to use scripts or button actions to duplicate all the EDM Message
Button’s features.

Up/Down Button Spinner EDM’s Up/Down button lets you increment or decrement the value
of a PV with left and right mouse buttons. Spinner kind of serves
the same purpose - a widget that lets you step a PV up and down by
fixed amounts. Spinner is much better than Up/Down button though,
as it has a built-in indicator, and doesn’t require the user to know
in advance that you need to right click to increment and left click to
decrement.



14

Ramp Button None EDM’s Ramp button continuously changes the value of a PV from a
minumum value to a maximum. There is no CSS counterpart. This
button is only used in one LCLS EDM Panel. The ramp button func-
tionality might be possible to duplicate with a script on a Action
Button widget.

Freeze Button None The Freeze Button freezes all activity on an EDM panel. There is no
CSS counterpart. This button is rarely used in LCLS panels, and is
usually just a convenience to make it easier to take a screenshot of the
panel.

Exit Button Action Button Need to use a script on an Action Button to close the display.

Menu Mux None Menu Mux is used in many panels, and there is no direct replacement
for it. Menu Mux lets you create a drop-down menu with multiple
choices. Each choice sets values for multiple macro variables. Poten-
tially, widget scripts could be used to replace this functionality.

Related Display Action Button Use the ‘Add Open OPI’ button action.

Shell Command Action Button Use the ‘Add Execute Command’ button action.

Choice Button Choice Button
Multi-line Text
Entry

Text Input The multi-line feature of this EDM widget is unused at SLAC. CSS
does duplicate the functionality, though.

Triumf Slider Scaled Slider See the comments above for the EDM Motif Slider.
Multi-Slider None Works like the EDM Slider class, but has controls for two PVs on the

same slider. Only used on a couple of EDM panels for oscilloscope
control. Could be replaced with two separate Scaled Slider widgets.

TABLE IV: Analysis of the CSS widget set, as compared to EDM.


