A Framework for Portable High-Level Control Applications

Christopher K. Allen
Los Alamos National Laboratory
ckallen@lanl.gov
Developers

- Tom Pelaia, ORNL
- Paul Chu, ORNL
- John Galambos, ORNL
- Chris Allen, LANL
- Igor Verstovsek, Cosylab
- Igor Kriznar, Cosylab
- Ales Pucelj, Cosylab
- Gasper Pajor, Cosylab
- Mark Plesko, Cosylab
Presentation Outline

1. Description
2. Example applications using XAL
3. Specifications
4. Status
5. Future Directions
1. XAL Overview

- High-Level Control Application Framework
 - Java library
 - High-level view of machine (device-oriented)
 - Connection, modeling, and simulation
 - Controls toolbox

- Born out of UAL (Unified Accel. Lib.)
 - N. Malitsky et. al. at BNL

For more information see http://www.sns.gov/APGroup/appProg/xal
1. XAL Features

- **Portable applications**
 - Application written over XAL works on any machine
 - Represent arbitrary machines (configurable)
 - Machine introspection

- **Global control**
 - Control applications applied to machines at remote sites

- **“Matlab-like” environment for HLA development**
 - Modeling and simulation on-line
 - Controls “toolbox” for utilizing modern control theory
2. Applications using XAL

2.1 Beam alignment Use Case

2.2 Scripting applications

2.3 Remote commissioning of SNS
2.1 Use Case – Beam Alignment
2.2 Scripting and XAL

Jython

```python
# read the accelerator
acc_xml = "file:/home/jdg/xaldev/xal_xmls/sns.xml"
acc_xml = "file:/sns.xml"
acc = XmlDataSource.parseUrlAt(acc_xml, 0)

# get the some primary sequences from the accelerator
mebt = acc.getSequence("MEBT")
dtl1 = acc.getSequence("DTL1")
dtl2 = acc.getSequence("DTL2")

print "There are ", mebt.getAllNodes().size(), "nodes in the sequence", mebt.getId()
```

MatLab

```matlab
% scan the first quad
% monitor beam positions in the last MEBT BPM

for i =1:10
    fld(i) = field;
    quad.setField(field);
    va_chan.putVal(1); % for virtual accelerator
    pause(1); % for virtual accelerator
    xpos(i) = bpm.getXAvg;
    ypos(i) = bpm.getYAvg;
    field = field * 1.015; % increment field value
end

% Plot results
plot(fld, ypos)
```
Remote testing of high level applications from ORNL on the Front End System at LBNL
3. Specifications

3.1 XAL Framework Diagram
3.2 Data Graph Example
3.3 XAL System Diagram
3.4 XAL Component Diagram
3.1 XAL Framework and Mechanisms

<<framework>>

XAL

- Machine Representation and Configuration
- Machine Modeling and Simulation
- High-Level Controls Toolbox
- High-Level Connection Management
3.2 XAL Machine Representation

The XAL Data Graph

[Diagram showing the XAL Data Graph with nodes labeled as SNS, SNS.IonSource, SNS.RFQ, SNS.MEBT, SNS.Ring, MEBT.BPM, MEBT.QH, MEBT.DH, MEBT.QV, and MEBT.QV 06.]
3.3 XAL System Diagram

Diagram showing the relationships between different components of the XAL system, including subsystems, frameworks, and tools.
3.4 XAL Component Diagram

- «library» gov.sns.xal::xal.jar
- «use» machine connection
- «library» ca::ca.jar
- «library» Abeans::Abeans
- «library» jca::jca.jar
- «instantiate» machine_configuration.xml
- «library» Abeans
- «library» jca::jca.jar

{<= EPICS version 3.13}
4. XAL Status

- Machine representation completed
- Machined connection operational
- Modeling and simulation complete by 2003
- Control toolbox undeveloped

- Currently used at SNS for commissioning
 - XAL still a Version 1 product
 - Survived preliminary testing
 - Machine connection still changing
5. Future Directions

- Additions to the Toolbox

Accelerator high-level control is far behind the state of the art in control theory

- Auto pilots
- Guidance systems
- Spacecraft
- Cruise missile
Modern control techniques are over 50 years old yet rarely seen in accelerator applications

Let’s put some in the toolbox!