XAL Applications, Correlator and Framework

Thomas Pelaia II
SNS Accelerator Physics R&D Staff

June 18-20, 2003
Active Developers

- Chris Allen LANL
- Chungming P. Chu ORNL
- John Galambos ORNL
- Wolf Dieter Klotz ESRF
- Craig McChesney LANL
- Dan Ottavio BNL
- Thomas Pelaia ORNL
- Andrei Shishlo ORNL
Acknowledgements

- Nikolay Malitsky BNL
- Peregrine McGehee LANL
- Nick Pattengale formerly at LANL
- Cosylab Group
- EPICS Community
Contents

<table>
<thead>
<tr>
<th>Part I</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part II</td>
<td>Correlator</td>
</tr>
<tr>
<td>Part III</td>
<td>Framework</td>
</tr>
</tbody>
</table>
Part I

XAL Applications
Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Author(s)</th>
<th>Description</th>
<th>Application Framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExtLatGenerator</td>
<td>C.P. Chu, W.D. Klotz</td>
<td>Generate external lattice files: Trace 3D, Dynac</td>
<td></td>
</tr>
<tr>
<td>MEBT Cavity Scan</td>
<td>A. Shishlo</td>
<td>Controls amplitude and phase of MEBT cavities</td>
<td></td>
</tr>
<tr>
<td>MPS Post Mortem</td>
<td>J. Galambos</td>
<td>Monitor and sort by time stamp machine protection trips</td>
<td></td>
</tr>
<tr>
<td>MPX Main</td>
<td>W.D. Klotz</td>
<td>Runs the model and gets parameters at elements</td>
<td></td>
</tr>
<tr>
<td>One D Scan</td>
<td>A. Shishlo</td>
<td>Monitors one PV against another as it is scanned</td>
<td></td>
</tr>
<tr>
<td>Orbit Correction</td>
<td>T. Pelaia</td>
<td>Monitor and correct the orbit as needed in the background</td>
<td></td>
</tr>
<tr>
<td>Orbit Difference</td>
<td>C.P. Chu</td>
<td>Verifies magnet wiring against the model</td>
<td></td>
</tr>
<tr>
<td>Scope</td>
<td>T. Pelaia</td>
<td>Displays waveforms on a common time base</td>
<td></td>
</tr>
<tr>
<td>xio</td>
<td>N. Pattengale, C.P. Chu, J. Galambos, D. Ottavio</td>
<td>Monitor PVs in table, line plot and waterfall plot</td>
<td></td>
</tr>
<tr>
<td>xyz correlator</td>
<td>C.P. Chu, J. Galambos</td>
<td>Plots correlated, live PV scalars relative to each other</td>
<td></td>
</tr>
</tbody>
</table>
• Exports the XAL lattice to an external format

• Supported Formats:
 ✓ Trace 3D
 ✓ Dynac
• Scan amplitude and phase of MEBT rebuncher cavities to find optimal settings based on BPM response

• Ported from a Matlab version to XAL
• Monitors for machine protection trips

• Groups events by macro pulse

• Sorts events within a macro pulse by time stamp

J. Galambos
• User interface to the online model

• Runs the model through a selected section of the accelerator

• Displays twiss parameters and phase space information at each element

• Synchronizes model with real machine
One-D Scan

A. Shishlo

- Scans a PV and monitors another PV during the scan
- User specifies details of the scan
- Provides for analysis of scanned data
Orbit Correction

T. Pelaia

- Monitors and displays the live orbit
- Corrects the orbit in the background as necessary
- Measures the BPM Corrector response matrix
- Optimization specified via satisfaction curves
• Tool for verifying the machine against the online and Trace 3D models

• Useful to confirm magnet wiring

• Varies magnet strengths and displays the resulting change in orbit
• Virtual Scope

• Monitors and displays concurrent waveforms

• Waveforms aligned against a common time reference

• Each channel requires a waveform PV, time delay PV and sample period PV
• Live monitoring of PVs grouped by type
• Tabular and graphical views
• Convenient drill down PV selection tool organized by accelerator sequence and element type
XYZ Correlator

C.P. Chu, J. Galambos

- Plots correlated PV scalars relative to each other
- Can correlate two or three PVs
- Provides data fitting
- Allows exporting of data
Part II

XAL Correlator
Two or more events are correlated if they occur within a specified time window relative to each other. More specifically, at SNS, we usually pick a time window narrow enough to guarantee that two or more events are from the same macro pulse.
Other Correlators

- EPICS Correlator
 - Developed by Peregrine McGehee
 - Written in C++
 - Specific to Epics
 - Set the standard for the XAL correlator
Motivation for an XAL Correlator

- Want a pure Java correlator for XAL
- Want an extensible, component based package
- Need for handling nested correlations e.g. orbit capture
- Desire to have support for efficient, custom event filtering
- Want support for a variety of correlation configurations
What is the “XAL Correlator”?

- XAL package for correlating events
- Written in pure Java
- Two fundamental packages
 - Abstract correlator foundation to correlate events from sources
 - Channel specific implementation to correlate XAL channel monitor events EPICS PV monitor events
<table>
<thead>
<tr>
<th>Application</th>
<th>Sources</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit Correlator</td>
<td>BPM Correlators</td>
<td>BPM count</td>
</tr>
<tr>
<td>BPM Correlator</td>
<td>BPM xAvg, yAvg, ampAvg</td>
<td>Amplitude threshold, count</td>
</tr>
<tr>
<td>Scope</td>
<td>Generic array channels</td>
<td>count, trigger</td>
</tr>
<tr>
<td>MPS Post Mortem</td>
<td>MPS Signals</td>
<td>state, count</td>
</tr>
<tr>
<td>XYZ PV Correlator</td>
<td>generic channels</td>
<td>none</td>
</tr>
</tbody>
</table>
Design guidelines

• Create an extensible correlation framework in which the Channel correlator is a specific kind

• Allow for custom filtering of the source events and the correlation set

• Provide a filter factory for common filters

• Make the correlation process efficient and deterministic

• Offer several correlation run modes to support a variety of applications: single shot, recent best periodic, live flood
<table>
<thead>
<tr>
<th>Class</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlator</td>
<td>Public class for specifying the correlation parameters</td>
</tr>
<tr>
<td>BroadcastDelegate</td>
<td>Handles broadcasting of correlations to the client on behalf of the Correlator</td>
</tr>
<tr>
<td>SourceAgent</td>
<td>Manages the connection to and monitoring of a single source e.g. PV</td>
</tr>
<tr>
<td>BinAgent</td>
<td>Collects new events that correlate with a single event</td>
</tr>
<tr>
<td>RecordFilter</td>
<td>Interface of custom filters to be applied to new events</td>
</tr>
<tr>
<td>CorrelationFilter</td>
<td>Interface of custom filters to be applied to new correlations</td>
</tr>
<tr>
<td>Correlation</td>
<td>Container of the correlated records</td>
</tr>
<tr>
<td>CorrelationNotice</td>
<td>Interface of correlation listeners</td>
</tr>
</tbody>
</table>
Correlator Class Hierarchy

Correlator 1

SourceAgent 1..n

BinAgent 1..n

BroadcastDelegate 1

CorrelationFilter 0..1

RecordFilter 0..1
Channel Correlator Inheritance

Correlator

1

SourceAgent

1..n

ChannelCorrelator

1

ChannelAgent

1..n
1. A source event is posted and filtered by the source agent e.g. PV monitor event

2. The source agent recycles the oldest bin agent and sets its time stamp to the event’s

3. Existing bin agents check for correlations with the new event

4. New bin correlations are posted internally to the broadcast delegate.

5. The broadcast delegate posts filtered correlations to the registered clients
BinAgent Details

- Each source agent maintains a circular buffer of bin agents.
- A bin agent listens for new events from all sources.
- Each bin agent maintains the earliest and latest time stamps among the accepted events.
- It is okay for a new event to have an earlier time stamp.
- Time is measured in seconds since the EPICS epoch as a double value.
Nested Correlators

• Our design allows correlators to be nested
• A source agent simply wraps a correlator
• Allows for simpler and more transparent filtering
• Real example is the Orbit Correlator
 • BPM correlates its position and amplitude signals and filters on amplitude
 • Each BPM is a source for an orbit
Correlation Modes

• Post all correlations immediately works only if the correlation is complete

• Single shot correlation

• Periodic lossy posting ideal for GUI applications

• Periodic buffered posting to be implemented
Part III

XAL Framework
What is XAL?

• XAL is a Java framework for rapidly developing accelerator based applications.

• Founded upon UAL but is now independent

• Provides common tools for the entire accelerator

• Primarily built to accommodate SNS but is quite general
Goals

• Allow rapid development of robust applications

• Develop components once and share them across applications

• Have a common look and feel for all applications

• Develop intuitive, rich human interfaces

• Maintain good performance

• Support online modeling
Application Framework

- Provides a common look and feel to all of our applications
- Generic framework plus one accelerator theme
- Conforms to familiar user interface guidelines
- Document based
- Facilitates rapid application development
- Minimal boundaries on the developer
- Easily extensible
Application Classes to Subclass

- ApplicationAdaptor
 - Hooks to handle application events
 - Advertises application specific attributes
- XalDocument
 - Handle document events and behaviors
 - Save and restore a setup
- XalWindow
 - Main window for a document
Some Application Screenshots
Familiar Look and Feel for Free

• Familiar Menus and commands
• Multi document paradigm
• Standard output and error console
• Conforms to human interface guidelines
• Inherit several features with zero overhead
Tools

- Facilitate rapid development
- Some provide a common look and feel
- A few examples among dozens of current tools:
 - GUI components and utilities
 - data management
 - charting
 - math
 - correlator
Channel Access

• Two packages: gov.sns.ca and gov.sns.jca

• gov.sns.ca provides a convenient, abstract layer for generic channel access

 • Our applications and the XAL framework use this package alone for channel access

• gov.sns.jca is an adaptor that bridges gov.sns.ca with a slightly modified version of jca
Accelerator Input

- Oracle database holds the accelerator definition which consists of accelerator sequences, devices and PVs

- The accelerator definition is copied into an XML file

- XAL reads the XML file and generates an object graph view of the accelerator
 - Accommodates overriding and extension
 - Online model generates a lattice view of the accelerator with sequential elements
<table>
<thead>
<tr>
<th></th>
<th>Device View</th>
<th></th>
<th>Lattice View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlap</td>
<td>Allowed</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Physical</td>
<td>One to One</td>
<td></td>
<td>One to many</td>
</tr>
<tr>
<td>Mapping</td>
<td>No</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Drifts</td>
<td>No</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>
SMF Object Graph

- Accelerator contains accelerator sequences
- Accelerator sequence
 - corresponds to a physical section of the machine
 - contains accelerator nodes and sequences
- Accelerator node
 - One accelerator node per physical device
 - No drifts
Sample Accelerator Hierarchy

Accelerator

MEBT DTL CCL SCL HEBT Ring

QH₀₁ DCH₀₁ DCV₀₁ BPM₀₁ ...

Oak Ridge National Laboratory
Common Accelerator Nodes

- One class per device type
- Magnets
 - Bends, Correctors, Quadrupoles
- Diagnostics
 - BPM, BCM
- RF devices
- Generic
 - Completely data driven no specific class
Online Model

- Based on UAL Element/Algorithm/Probe architecture
- Calculates twiss parameters and transfer matrices
- Data synchronization for live analysis
- Lattice view is generated from SMF view but has drifts and element slices which are appropriate for model calculations
Present Activities

- Move to JCA 2.0 when it is released
- Collaborate with other JCA stakeholders
- Complete the online model development
- Begin design and development of an agent based architecture
- Write several applications
Conclusion

- XAL has provided a rapid development environment for developing accelerator physics applications in Java.

- XAL has proven to be flexible enough to meet new challenges and demands.

- XAL applications were successfully used during MEBT commissioning and user feedback has been positive.

- For more information and resources please visit: http://www.sns.gov/APGroup/appProg/xal/xal.htm