
GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynDriver: An Interface
Between EPICS Drivers and

Device Support

Mark Rivers, Marty Kraimer, Eric Norum

University of Chicago

Advanced Photon Source

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

References

• This talk is short version of
– http://www.aps.anl.gov/aod/bcda/epicsgettingstarted/iocs/ASYN.html

• asynDriver is available at

– http://www.aps.anl.gov/epics/modules/soft/asyn

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

What is asyn and why to we need it?
EPICS IOC architectureMotivation

•Standard EPICS
interface between
device support and
drivers is only
loosely defined

•Needed custom
device support for
each driver

•asyn provides
standard interface
between device
support and device
drivers

•And a lot more too!

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

History – why the name asynDriver

• The initial releases of asynDriver were limited to
“asynchronous” devices (e.g. slow devices)
– Serial

– GPIB

– TCP/IP

• asyn provided the thread per port and queuing that this
support needs.

• Current version of asynDriver is more general, synchronous
(non-blocking) drivers are also supported.

• Device support written as though asynchronous

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynDriver Architecture

Device support (or SNL code,
another driver, or non-EPICS

software)

device device

Port (named object)

Port driver

addr=0 addr=1

Interfaces (named;
pure virtual functions)

asynCommon
(connect, report, …)

asynOctet (write,
read, setInputEos,…)

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Control flow – asynchronous driver

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Control flow – synchronous driver

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynManager – Methods for drivers
• registerPort

– Flags for multidevice (addr), canBlock, isAutoConnect
– Creates thread for each asynchronous port (canBlock=1)

• registerInterface
– asynCommon, asynOctet, asynInt32, etc.

• registerInterruptSource, interruptStart, interruptEnd
• interposeInterface
• Example code:

status = pasynManager->registerPort(portName,

 ASYN_MULTIDEVICE, /*is multiDevice*/

 1, /* autoconnect */

 0, /* medium priority */

 0); /* default stack size */

status = pasynManager->registerInterface(portName,&pPvt->common);

pasynManager->registerInterruptSource(portName, &pPvt->int32,

 &pPvt->int32InterruptPvt);

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynManager – Methods for Device Support
• Create asynUser
• Connect to device, i.e. to port driver
• Queue request for I/O to port

– asynManager calls callback when port is free
• Will be separate thread for asynchronous port

– I/O calls done directly to interface methods in driver
• e.g. pasynOctet->write()

• Example code:
 /* Create asynUser */
pasynUser = pasynManager->createAsynUser(processCallback, 0);
status = pasynManager->connectDevice(pasynUser, pPvt->portName, pPvt->addr);
pasynInterface = pasynManager->findInterface(pasynUser, asynInt32Type, 1);
...
 status = pasynManager->queueRequest(pPvt->pasynUser, 0, 0);
...
 status = pPvt->pint32->read(pPvt->int32Pvt, pPvt->pasynUser, &pPvt->value);

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynManager – asynUser
• asynUser data structure. This is the fundamental “handle” used by asyn.
asynUser = pasynManager->createAsynUser(userCallback

process,userCallback timeout);
asynUser = pasynManager->duplicateAsynUser)(pasynUser,

userCallback queue,userCallback timeout);
typedef struct asynUser {
 char *errorMessage;
 int errorMessageSize;
 /* The following must be set by the user */
 double timeout; /*Timeout for I/O operations*/
 void *userPvt;
 void *userData;
 /*The following is for user to/from driver communication*/
 void *drvUser;
 /*The following is normally set by driver*/
 int reason;
 /* The following are for additional information from method

calls */
 int auxStatus; /*For auxillary status*/
}asynUser;

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Standard Interfaces

Common interface, all drivers must implement
• asynCommon: report(), connect(), disconnect()

I/O Interfaces, most drivers implement one or more
• All have write(), read(), registerInteruptUser() and cancelInterruptUser()

methods
• asynOctet: writeRaw(), readRaw(), flush(), setInputEos(), setOutputEos(),

getInputEos(), getOutputEos()
• asynInt32: getBounds()
• asynInt32Array:
• asynUInt32Digital:
• asynFloat64:
• asynFloat64Array:

Miscellaneous interfaces
• asynOption: setOption() getOption()
• asynGpib: addressCommand(), universalCommand(), ifc(), ren(), etc.
• asynDrvUser: create(), free();

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynRecord
• New EPICS record that provides

access to most features of asyn,
including standard I/O interfaces

• Applications:
– Control tracing (debugging)

– Connection management

– Perform interactive I/O

• Very useful for testing,
debugging, and actual I/O in
many cases

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Tracing and Debugging
• Standard mechanism for printing diagnostic

messages in device support and drivers
• Messages written using EPICS logging facility,

can be sent to stdout, stderr, or to a file.
• Device support and drivers call:

– asynPrint(pasynUser, reason, format, ...)
– asynPrintIO(pasynUser, reason, buffer, len,

format, ...)
– Reason:

• ASYN_TRACE_ERROR
• ASYN_TRACEIO_DEVICE
• ASYN_TRACEIO_FILTER
• ASYN_TRACEIO_DRIVER
• ASYN_TRACE_FLOW

• Tracing is enabled/disabled for (port/addr)

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Current port Drivers
• Unix/Linux/vxWorks/cygwin serial ports
• TCP/IP sockets
• GPIB via National Instruments VME, Ethernet/GPIB devices, Ip488

Industry Pack modules
• VXI-11
• IpUnidig digital I/O (Industry Pack). Supports interrupts.
• dac128V digital-to-analog (Industry Pack)
• Ip330 analog-to-digital (Industry Pack). Supports interrupts.
• Canberra AIM multi-channel analyzer and ICB modules (Ethernet)
• XIA DXP DSP spectroscopy system (CAMAC, EPP, PXI soon)
• APS quad electrometer (VME). Supports interrupts.
• epid record fast feedback (float 64 with callbacks for input, float64 for

output)
• Mca fast-sweep (Int32Array with callbacks)

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Fast feedback device support (epid record)

• Supports fast PID control

• Input: any driver that
supports asynFloat64 with
callbacks (e.g. callback on
interrupt)

• Output: any driver that
supports asynFloat64.

• In real use at APS for
monochromator feedback
with IP ADC/DAC, and
APS VME beam position
monitor and DAC

• >1kHz feedback rate

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Summary- Advantages of asynDriver
• Drivers implement standard interfaces that can be accessed from:

– Multiple record types
– SNL programs
– Other drivers

• Generic device support eliminates the need for separate device support in
90% (?) of cases
– synApps package 10-20% fewer lines of code, 50% fewer files with asyn

• Consistent trace/debugging at (port, addr) level
• asynRecord can be used for testing, debugging, and actual I/O applications
• Easy to add asyn interfaces to existing drivers:

– Register port, implement interface write(), read() and change debugging output
– Preserve 90% of driver code

• asyn drivers are actually EPICS-independent. Can be used in any other
control system.

