cosylab mm

CONTROL SYSTEM LABORATORY

Java implementation of Channel Access
(CAJ)

Matej _ekoranja (presented by Mark Ple_ko)
Funded by DLS (M.Heron) and DESY (M.Clausen)

EPICS Meeting — Japan, 2004

www.coszlab.com
What is CAJ?

 Channel Access in Java (CAJ) is a CA client library written completely
in Java

e [t “plugs” into JCA 2 interfaces

» Written as a result of detailed analysis of existing CA library to provide
better stability and performance opposed to the current JCA JNI
implementation

* Since 1t was written from scratch code is clean, follows OO design and
uses lots of design patterns

* No problems with native libraries (no recompilation needed)

www.coszla b.com
Achieving stability

» The main reason CAJ was written 1s stability - JCA JNI was not hard to
crash with our ControlDesk application for the DLS (extensive concurrent
connect, monitor creation and value retrieval)

 Profound testing during the whole development cycle
* ~ 90% of code coverage!
» Code simplicity helped a lot (simple code leads to less bugs)
* ‘TCP Reno’-like UDP congestion control
 Until now “only” 3 CAJ bugs were discovered

2 by Ken Evans

www.coszla b.com
Achieving performance

 Latest concurrent, network communication design patterns used to
implement efficient event demultiplexing, minimize context switching and
maximize CPU cache affinity (Leader/Followers design pattern used)

» Asynchronous I/O used (Java NIO package)

* new epoll-based selector supported, which 1s improved select(); available in
the latest Linux 2.6 kernel

* (Some performance measurements will be shown later)

* Due to OO design light CAJ version is possible (one communication
thread), convenient for light CA clients (handhelds)

www.coszlab.com
Immediate JCA JNI to CAJ migration

Simply change (example):

jca.createContext (JCALibrary.JNI SINGLE THREADED) ;

OR

jca.createContext (JCALibrary.JNI THREAD SAFE);

v

jca.createContext (JCALibrary.CHANNEL ACCESS JAVA) ;

... and take care of configuration.

Note that CAJ can not use system environment variables like eptcs ca appr n1sT (not
available in Java 1.4, but available again in Java 1.5).

LMo

www.cosylab.com

OO Usage of JCA

E
E

rule ¥ sk

i ey

&

-

sdl_TesRfals BANE
S EPeQLE THMERDED

e AN R Bl o e et
Binmg v gme ppvom o Begle Thewpdedtontad
bbb, COESE_isiis - Gming = ‘mev oniplRe s ol CAM o

+

pui-sin-w

A, vy

LIty e T B T P S

LM

www.coszla b.com

Performance measurements

* Client on the same host as server, Pentium IV 1.6GHz, 1GB RAM, Red Hat 9

*''no bulk" means calling flushlO() after each get request

CAJ vs. JCA JNI/ThreadSafe comparison

P "

2000 /r

1500 /-/
1000

Time to get all responses [ms]
N

0 - .

0 T T T

S get-s

| CAJ = JNI|

10000 sync get-s 10000 async get-s 10000 (no bulk) sync get- 10000 (no bulk) async.

Note: this is only synthetic performance test and doesn’t reflect performance in practice!

LMo

www.coszlab.com
Comparing to C Version of CA

» Completely different approaches:
* C pointer versus Java object creation

« Java is clean, C is dirty but quick ©
* Based on CA 4.11, should be compabitle down to 4.0

* But has not been tested

» Backward compatibility might be an issue

» several undocumented features in the C version, might have missed one

www.coszla b.com
User Experiences

 Control Desk

 was limited to some 300 PVs before
e JoiMint

* just got ported to JCA 2 so it can use CAJ
 JProbe (Ken Evans ported it to JCA 2).

* “I have tested it on all the dbr types. Like my performance test, it is

an application that requires a large subset of the features provided by
CA. I think CAJ is looking good.”

 “Moreover, my test program, which accesses 100 PVs updating at 10
Hz, worked *much* better. Before, there were dropouts. Now, it
seems to keep up. Cool!”

LMo

www.coszla b.com
Conclusions

* Needs some time (production usage) to confirm maturity

 JCA still has much room for performance improvements, now that JNI
isn’t the bottleneck anymore

» Open possiblities for more user friendly applications based on Java
«develop a CAJ server to integrate other Java Applications?
* Proves that

» other-than legacy CA implementation can be done ...

* CA documentation 1s useful and useable and that CA is not something
mysterious

* Cosylab needs a new task (and funding ©)

