
Java implementation of Channel Access
(CAJ)

Matej _ekoranja (presented by Mark Ple_ko)

Funded by DLS (M.Heron) and DESY (M.Clausen)

EPICS Meeting – Japan, 2004

What is CAJ?

• Channel Access in Java (CAJ) is a CA client library written completely
in Java

• It “plugs” into JCA 2 interfaces

• Written as a result of detailed analysis of existing CA library to provide
better stability and performance opposed to the current JCA JNI
implementation

• Since it was written from scratch code is clean, follows OO design and
uses lots of design patterns

• No problems with native libraries (no recompilation needed)

Achieving stability

• The main reason CAJ was written is stability - JCA JNI was not hard to
crash with our ControlDesk application for the DLS (extensive concurrent
connect, monitor creation and value retrieval)

• Profound testing during the whole development cycle

• ~ 90% of code coverage!

• Code simplicity helped a lot (simple code leads to less bugs)

• ‘TCP Reno’-like UDP congestion control

• Until now “only” 3 CAJ bugs were discovered

•2 by Ken Evans

Achieving performance

• Latest concurrent, network communication design patterns used to
implement efficient event demultiplexing, minimize context switching and
maximize CPU cache affinity (Leader/Followers design pattern used)

• Asynchronous I/O used (Java NIO package)

• new epoll-based selector supported, which is improved select(); available in
the latest Linux 2.6 kernel

• (Some performance measurements will be shown later)

• Due to OO design light CAJ version is possible (one communication
thread), convenient for light CA clients (handhelds)

Immediate JCA JNI to CAJ migration

Simply change (example):

jca.createContext(JCALibrary.JNI_SINGLE_THREADED);

OR

jca.createContext(JCALibrary.JNI_THREAD_SAFE);

jca.createContext(JCALibrary.CHANNEL_ACCESS_JAVA);

… and take care of configuration.

Note that CAJ can not use system environment variables like EPICS_CA_ADDR_LIST (not
available in Java 1.4, but available again in Java 1.5).

OO Usage of JCA

Performance measurements

CAJ vs. JCA JNI/ThreadSafe comparison

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10000 sync get-s 10000 async get-s 10000 (no bulk) sync get-
s

10000 (no bulk) async.
get-s

T
im

e
to

 g
et

 a
ll

re
sp

o
n

se
s

[m
s]

CAJ JNI

Note: this is only synthetic performance test and doesn’t reflect performance in practice!

• Client on the same host as server, Pentium IV 1.6GHz, 1GB RAM, Red Hat 9

•"no bulk" means calling flushIO() after each get request

Comparing to C Version of CA

• Completely different approaches:

• C pointer versus Java object creation

• Java is clean, C is dirty but quick 

• Based on CA 4.11, should be compabitle down to 4.0

• But has not been tested

• Backward compatibility might be an issue

• several undocumented features in the C version, might have missed one

User Experiences

• Control Desk

• was limited to some 300 PVs before

• JoiMint

• just got ported to JCA 2 so it can use CAJ

• JProbe (Ken Evans ported it to JCA 2).

• “I have tested it on all the dbr types. Like my performance test, it is
an application that requires a large subset of the features provided by
CA. I think CAJ is looking good.”

• “Moreover, my test program, which accesses 100 PVs updating at 10
Hz, worked *much* better. Before, there were dropouts. Now, it
seems to keep up. Cool!”

Conclusions

• Needs some time (production usage) to confirm maturity

• JCA still has much room for performance improvements, now that JNI
isn’t the bottleneck anymore

• Open possiblities for more user friendly applications based on Java

•develop a CAJ server to integrate other Java Applications?

• Proves that

• other-than legacy CA implementation can be done …

• CA documentation is useful and useable and that CA is not something
mysterious

• Cosylab needs a new task (and funding )

