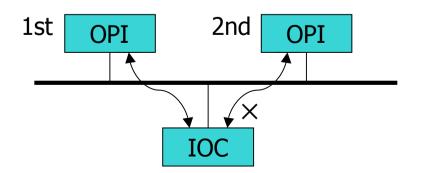


Accelerator Group J-PARC, JAERI April 2004


Why enhancement is required?

- Requirement from high-intensity proton machine: (Mega-Watt class machine)
 - There is a target value for effective dose in J-PARC. (0.25µSv/hour)
 - In our 50GeV synchrotron, effective dose when 100% loss will be 49µSv/pulse. Loss of a beam pulse causes waste of machine time for 200 hours.
 - We are not allowed to mistake on operation at all. We need anything to reduce possibility of operation error as low as possible.
 - So, access control enhancement by using exclusive operational right is required to achieve more safe operation.

What is the exclusive operational right?

First come, first serve...

- 1 Each critical records have a property of access control called "exclusive operational right."
- 2 A client connected to a record at first have an exclusive operational right (right to write) and can full access.
- ③ A client connected on and after second have no exclusive operational right and can not write access to a record. (but can read access)

Exclusive operational right

o Requirements:

- An operation (write access) to a record must be permitted only for one operator at a time.
- An operational right must be passed to another operator.
- An operational right must be force released by supervisor if need.
- Status of operational right should be shown for others.

A plan to implement

• Step by step strategy:

- Phase 1
 - Minimum modification to make full use of existing EPICS resources.
- Phase 2

Full spec implementation.

Phase 1: A tentative implementation

o Outline:

- Changes of operational right is notified by using CA_PROTO_ACCCESS_RIGHTS packet.
- Modify the CA Server program a bit
- No modification on CA protocol
- No modification on AS files
- o Merit
 - No compatibility problems
 - No need to modify existing clients
- o Demerit
 - All of records on an IOC may take effect
 - No legal way to know who has the right

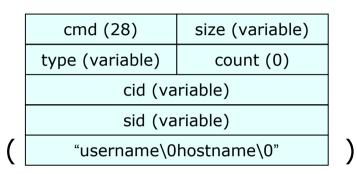
Phase 1 implementation: procedure to pass a right

• Points:

- Pass the right to another client when right holding channel was disconnected.
 (Because existing clients could not take the right themselves.)
- Procedure:
 - CAS (CA Server) choose a client within current connected channels to pass the right when right holder client was disconnected.
 - ② CAS send an ACCESS_RIGHTS packet to the client.

Phase 1 implementation: trick to force pass a right

- Points:
 - Assign an user who has privilege to force release operational rights.
 - Force release current operational right when channel is connected from privileged user. (Because existing clients could not return the right themselves.)
- Procedure:
 - 1 CAS send an ACCESS_RIGHTS packet to right holder client when the right was released.
 - 2 CAS choose a client within current connected channels to pass the right.
 - ③ CAS send an ACCESS_RIGHTS packet to the client.



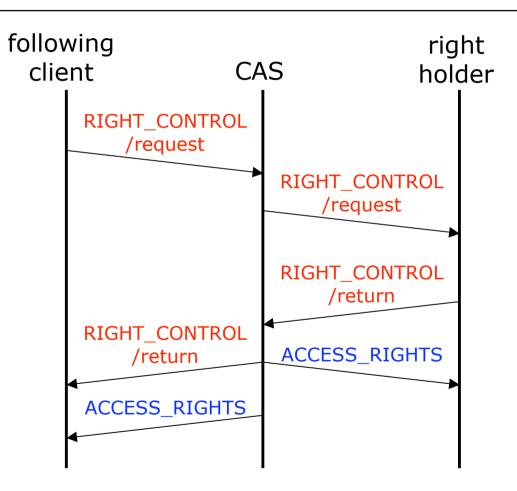
Phase 2: A proposal implementation

• Outline:

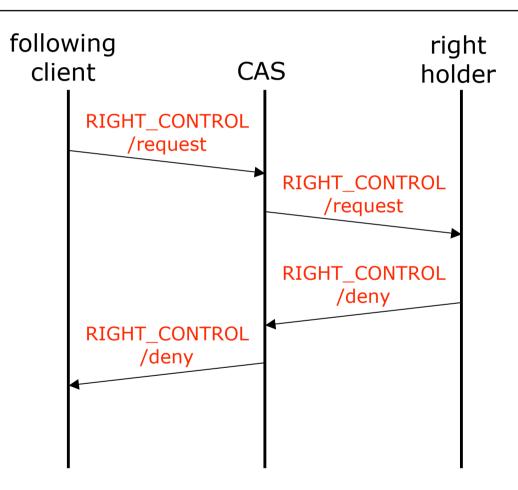
- Add a new command to CA protocol
 - o new CA_PROTO_RIGHT_CONTROL
 - \circ existing CA_PROTO_ACCESS_RIGHTS also used
- Add new keywords in AS file
 - to specify record need or not need operational exclusion
 - o to specify privileged user
- o Merit
 - realize all of requirements
- o Demerit
 - right control dialogue are desired on GUI's
 - too hard to update all of existing clients

Phase 2 implementation: new CA_PROTO_RIGHT_CONTROL packet

the 'type' field is abused for sub-command

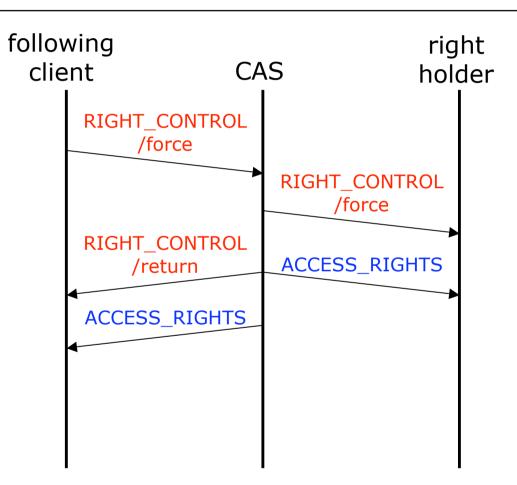

- query(0)
- replay packet have payloadrequest(1)request for a right
- return(2) return/pass a right
- deny(3)
 deny request for a right
- force(4)
- request for a right (force)

query current status of right.


Phase 2 implementation: procedure to pass a right

- 1 A following client send a **RIGHT_CONTROL/request** packet to CAS.
- ② CAS relay the packet to a client who has operational right. Note that Channel Access has no way of interclient communication, so CAS should relay it.
- ③ The right holder client returns a <u>RIGHT_CONTROL/return</u> or /deny reply packet according to decision of permit or deny. Note that this decision possibly done by operator.
- ④ After right returned, CAS send an ACCESS_RIGHT packet to the previous client.
- (5) CAS relay the RIGHT_CONTROL packet to following client. And also send an ACCESS_RIGHT packet when operational right is passed.

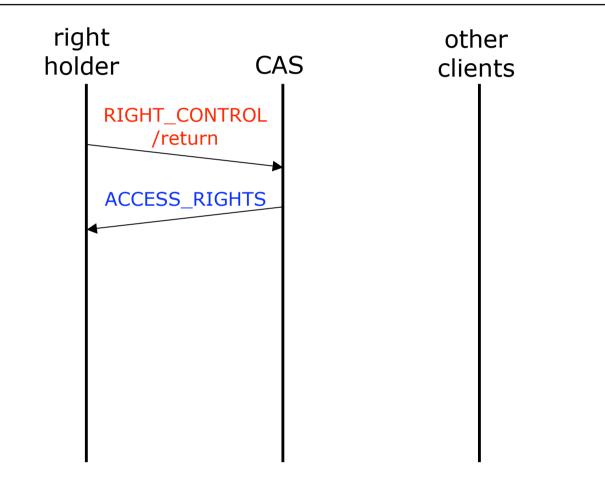
Phase 2 implementation: procedure to pass a right (accept)


Phase 2 implementation: procedure to pass a right (deny)

Phase 2 implementation: procedure to force release a right

- A following client send a RIGHT_CONTROL/force packet to CAS. Note that following client must have privilege.
- ② CAS relay the packet to a right holder client. No reply from the right holder client at this point.
- 3 CAS send an ACCESS_RIGHT packet to the right holder client.
- ④ CAS send a RIGHT_CONTROL/return packet and an ACCESS_RIGHT packet to following client.

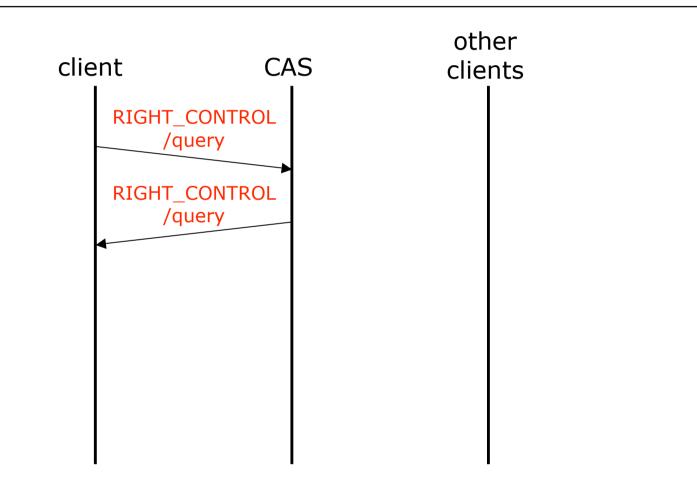
Phase 2 implementation: procedure to force release a right



Phase 2 implementation: procedure to return a right

- Right holder client send a RIGHT_CONTROL/return packet to CAS.
- 2 CAS send an ACCESS_RIGHT packet to client.

Phase 2 implementation: procedure to return a right



Phase 2 implementation: procedure to query status of a right

- 1 A client send a **RIGHT_CONTROL/query** packet to CAS.
- 2 CAS returns a RIGHT_CONTROL/query packet with right holder information.

Phase 2 implementation: procedure to query status of a right

