Status of EPICS at KEK

Tatsuro NAKAMURA
KEK
Jun. 2006
Contents

• Overview of EPICS Activity at KEK
 – Status of Linac Control System
 – Status of KEKB/PF-AR Control System
• Upgrade of the KEK-PF Control System
• Everywhere Python
Overview of EPICS Activity at KEK

- **J-Parc** → Kamikubota-san’s Talk
- **KEKB** EPICS based system
- **PF-AR** EPICS based since 2002
- **PF** EPICS based since 2005
- **Linac** Non-EPICS
- **EPICS based small-size systems**
 - **RFGTB** EPICS based system
 → Araki-san’s talk at EPICS meeting in Tokai, 2004
Linac provides:
for PF: 2.5 GeV e-
for PF-AR: 3 GeV e-
for KEKB: 8 GeV e-
 3.5 GeV e+
Status of Linac Control System

• Non-EPICS control system based on Remote Procedure Call & Distributed Shared Memory

• Linac-to-EPICS Gateway
 1 Portable Channel Access Server (Old)
 ~ 4950 records
 3 SoftIOC on Linux with AsynDriver (New)
 ~ 9672 records

Many of above records are archived in KEKBLog and/or Channel Archiver (~ 400MB/day)
Plan in the coming summer shutdown

• real IOC's will be installed
 ➢ ~10 Windows IOC's on DSO7104 Oscilloscopes for BPM
 ➢ ~7 MVME5500 IOC's for Event/Timing and Low Level RF
Status of KEKB/PF-AR Control System

• KEKB History --- The first application of EPICS in Japan
 – Mar. 1998 part of e- BT line commissioning
 – Jun. 1998 part of e+, e- BT lines commissioning
 – Dec. 1998 KEKB rings commissioning started

• PF-AR History
 – 2001 1 year shutdown of PF-AR for upgrade
 • Control system was completely replaced to EPICS
 – Jan. 2002 operation of PF-AR restarted
Host computers in 2006

• Host computers for EPICS development
 – 2 HP-UX servers
 – 1 Sun server (New)
 – 1 Linux server (New)

• Host computers for Operation & Accelerator Modeling calculation ("SAD cluster")
 – 3 Alpha servers
 – 2 Linux servers
 – 8 Macintosh OSX servers
SAD

• SAD (Strategic Accelerator Design) is a computer program complex for accelerator design developed in KEK since 1986.

• Most of the high level applications for operation are developed by SAD

• Workshop SAD2006
 – Sep. 5-7 2006 at KEK
IOC in 2006

• ~110 VME/VxWorks IOC with EPICS 3.13.1
 CPU: Force PowerCore6750, PowerCore6603e
 Force CPU64, CPU40

• 1 VME/VxWorks IOC with EPICS 3.14.8

• Several PC/Linux IOC with EPICS 3.14
 – For Software records
 – For Ethernet devices (NetDev)
Field bus in 2006

- **Arcnet** for Magnet PS
- **VXI-MXI** for BPM
- **Modbus plus** for interfacing to interlock systems
- **GPIB, RS-232C** for many kinds of instruments
- **CAMAC** for RF control and some devices
 (about 20 years old legacy system)
- We plan to replace CAMAC modules to PLC with Ethernet
- A Mitsubishi **PLC with Ethernet** is used for the special magnet PS (for local orbit feedback)
- Test of a Yokogawa **PLC with Ethernet** is now going in a Klystron Test Station.
Upgrade of the KEK-PF Control System

Photon Factory, KEK

T. Obina
(takashi.obina@kek.jp)

Jun/2006 EPICS meeting
KEK Site

Linac

PF 2.5GeV e-
PF-AR 6.5GeV e-
KEKB 8.0GeV e-

3.5GeV e+
Brief History

- 1982: Commissioning (420nm.rad)
- 1986: Medium emittance (130nm.rad)
- 1997: Low emittance (36nm.rad)
- 2005: Straight-Sections Upgrade
 - Main purpose of the project
 - enlarge the existing straight sections
 - increase the number of straight sections (7 -> 13)
 - Control : EPICS
Before Upgrade

- based on our in-house software
 - "Device Server" and "Data Channel"

Device Server
- many plathome
 - PC, VME, WS
- CAMAC, GPIB, etc

Data Channel (DCh)
- not used for equipment control
- Shared memory + Client Lib
- keep latest information
 - always updated
Control Task and OPI

- Control Task
 - FORTAN or C (running on Workstations)

- Operator Interface
 - Communicate through Input/Output Mediator
 - GUI: developed by VAPS
Upgrade Policy

• DataChannel&Device Server
 – Advantage
 • many OS: Unix(HP/Sun/Linux), OS-9, HP-RT, Windows, etc
 • Simple, light-weight
 • Easy & Fast Development (Device controller or GUI) is possible
 – Disadvantage
 • Control Task & OPI is closely related
 • DCh: no session management
 • DCh: no Event notification

Extend the functionality of DataChannel? or Adopt EPICS?
Hardware: IOC

– RF
 • VME(PPC 750 + VxWorks) for CAMAC
 • PC(Soft IOC on Linux) + PLC with Ethernet : HV Controller
 • PC(Soft IOC on Linux) + LAN/GPIB : GPIB inst.

– Magnet
 • VME(PPC750 + VxWorks) for CAMAC : Large Power Supply
 • VME(Intel PIII + Linux) : Small Power Supply
 • PC(Soft IOC on Linux) + LAN/GPIB : DMM, GPIB inst.

– Timing
 • VME(PowerPC 750 + VxWorks) with Bus Interrupt board

– Insertion Device
 • VME(PowerPC750 + VxWorks) + LAN/GPIB
 we plan to replace with Linux IOC
Hardware (cont.)

– Vacuum
 • PC (Soft IOC on Linux) + PLC with Ethernet
 – Omron PLC

• Device support for Omron PLC is developed by M. Komiyama (RIKEN) and J-I. Odagiri (KEK)
RF Control

- Kinetic VME-Kbus
- IOC(pcore750, VxWorks)
- CAMAC
 - Input register, output reg, Control reg
- PLC
- PC(Linux)
- GPIB
- PC(Linux)
RF Control Panel (Example)
MEDM(DM2K), SAD/Tkinter
Magnet Control

- Two types of power supplies
 - Large Power Supply (LPS) B,Q,S
 - Small Power Supply (SPS) Steering Magnet, BT, etc

- LPS: CAMAC (Input/Output register)
- SPS: Dedicated Controller Board
 - 1 Power Supply Interface (PSI) for 1 Power Supply
 - PSI: ADC, DAC, DIO (for relay, interlock, etc)

- 3 VME CPU (Linux) + Bus Bridge
 - total 7 VME subrack
1 VME CPU/Subrack
7 CAMAC Crate
Number of LPS: about 30

3 VME CPU
8 VME Subrack
Number of SPS: about 200

CC: Crate Controller
IR: Input Register
OR: Output Register

BR: Bus Bridge
PSI: Power Supply Interface (with AD/DA/DIO)
Magnet Control
Archive/Retrieval

• Channel Archiver (2.8.1)
• Number of records / Data Amount
 • Mon: 250record 300MB
 • BT: 50record 14MB
 • ID: 15record 1MB
 • Mag: 750record 40MB
 • OP: 40record 10MB
 • RF: 1200record 60MB
 • Vac: 2100record 130MB

• Total 500-600MB/day
• Retrieval
 – Web (CGI) and ArchiveExport command
Everywhere Python

• We use python as the programming language for OPI applications
• We begin to try using python also for IOC applications. (Linux IOC)
 – Multi-threadable CaPython
 – devPython
 – Python calc record
Multi-threadable CaPython

- Python + CA library + Multithreading
 = “Multi-threadable CaPython”
 - It can describe control logics on IOC
 - Alternative of the SNL/sequencer
 - Provides richer functionality
 - Allow quicker development of applications

- Current Status: under development
devPython

- Device support which invoke python interpreter
- Python program is specified through INST_IO parameter
- Currently ai record is tested
- We expect...
 - Non-EPICS subsystem written in python can be easily integrated into EPICS system.
Python calc record

- Alternative of calc record (or subroutine record)
- More powerful than calc record
- Easier than C programming (subroutine record)
- Current status: Just an idea