
Scientific Software, Java, and
Eclipse

Kenneth Evans, Jr.

Presented at the EPICS Collaboration Meeting
April 23 - 27, 2007
Deutsches Elektronen Synchrotron DESY, Hamburg, Germany

Outline

Scientific Software and Examples
Java
X-Ray Software Development at the APS
Eclipse and Examples

Scientific Software

The language of choice used to be FORTRAN
– There are still many legacy FORTRAN codes in use

C and C++ have become popular
– Grid computing now tends to be done in C

Many scientists use Python
– Reasonably powerful, yet easy to use
– Allows them to do science rather than software

There are now a number of significant scientific projects using Java
– Many started out as C, but have evolved to Java

Java is now an acceptable, if not the preferred, language for scientific
software development

Java Analysis Studio (JAS3)

Developed by and for the High-Energy physics community
Plotting of 1d, 2d, 3d Histograms, XY plots, Scatter plots, etc.
Open source
Attractive plotting
Fitting, other mathematical analysis
– Primarily from CERN

Highly modular structure
– Uses plug-ins

JMol – Molecular Viewer

Commonly used as an applet
that can be integrated into web
pages to display molecules in a
variety of ways
Also has a standalone
application and a development
tool kit that can be integrated into
other Java applications
Interactive, 3D
Free, Open Source

One of several Java Molecular
Graphics packages

•Crystal structure of an H/ACA box RNP from Pyrococcus
furiosus (PDB CODE: 2HVY)

VisAD

Space Sciences and Engineering Center (SSEC), and others
Extensive 2D and 3D visualization package
Free, Open Source

VTK

Software system for 3D computer graphics,
image processing, and visualization
Used by thousands of researchers and
developers around the world
Written in C++
Has Java wrappers
– Also, Tcl/Tk, Python

Free, Open Source

ISAW
The primary tool for analyzing neutron scattering data at the IPNS
Has an extensive and sophisticated interface

•From: John Hammonds, IPNS

Java ?

Java has become a major language
The reason is that most commercial development uses J2EE
– There is money to be made improving Java and its tools

Applications have performance approaching applications written in C
There is already extensive scientific development in Java
In my opinion, there is no other viable choice for high-quality, cross-
platform, GUI development
– Huge API
– Write once, run anywhere
– Easy to code (compared to C or C++, anyway)
– Good performance
– Excellent development tools

Java Development Tools

Spell checks as you go
– No “write – compile – load – run – figure out what happened” cycle
– Probably the one most significant productivity enhancement

Provides content assist
– Probably the next most significant productivity enhancement

Compiles as you write
– Cycle is now “write – run”

Massive refactoring
– E.g. Change a variable name in all your files in all your projects

Wizards and Tools to help at every stage
– E.g. Generate getters and setters for all your properties
– E.g. Add and/or clean up imports

The above are just a small sample
– Some of these are available for other languages
– But usually not at the level they are for Java

Java in Matlab
Matlab has extensive support for Java
– Your favorite software framework can also be used in Matlab

X-Ray Software Development at the APS

Best described as “Uncoordinated”
Wide variety of languages
– FORTRAN, C, C++, Perl, Tcl/Tk, Python, Java, …

Visualization relies on (different) commercial products
– IDL, IGOR, Matlab, …

Each beamline tends to do its own thing
Modeling and Analysis is not well integrated with Data Acquisition
Lack of real-time data reduction
Little high-performance computing
Little remote access
No common data format

A Scientific Software Section was formed to help remedy this situation

XRAYS

Stands for X-Ray Analysis Software
– (or X-Ray Software)

It is expected to grow into a large suite
of analysis and visualization applications

These will include:
– Scientific workbench program
– New analysis and visualization applications
– Updating and coordination of existing analysis and visualization

applications
– A framework of software routines that developers can use to write

applications
It currently consists mostly of exploration and prototype applications
– This is the groundwork for what we really want to do
– More than 1200 Java source files in 60 projects
– 38 Java projects intended for distribution (gov.anl.xrays.xxx)
– 10 ready-to-deploy features (collections of projects) in 4 categories

We Want to Manage the Entire Experimental Data Flow

raw data (2-D intensity,
E, T, P, t, etc.)

reduced data, I(Q)

adjustable
parameters

data reduction

experiment(s)

data analysis modeling

publication, presentation,
archival, printing

visualization

Eclipse

Eclipse is an Open Source community
It was started in 2001 by IBM
– IBM donated a lot of research
– Controlled the early development, but later relinquished control

It is now controlled by the Eclipse Foundation
– Strategic members contribute up to $500K and 8 developers
– Currently 17 strategic members
– Currently more than 150 developers

Out of the box it looks like a Java IDE (Integrated Development
Environment)
It is really a Plug-in manager
– That happens to come with Java Development plug-ins.
– You can make it be most anything you want

XRAYS Rationalization for Eclipse
Providing coordination is a primary goal
Resources are limited
Have to choose something
– Eclipse seems like the best choice
– Powerful, flexible, extensible
– Open-source
– Huge community with many projects

Java development environment leads to high productivity
Deployment via plug-ins appears to solve many problems

We intend to use Eclipse, not as an IDE, but as a workbench
– Something users will use

Downsides
– Most x-ray beamline staff and users are not using Eclipse now
– 95% will be unhappy [with anything we do]

Deployment is a Major Reason for Using Eclipse

Both Java and Eclipse are multi-platform
Updates are easily made through the Eclipse update mechanism
You can wrap 3rd party applications in your own plug-ins
– For example:

The Feature “XRAYS JFreeChart”
contains gov.anl.xrays.jfreechart
which wraps JFreeChart

– Including DLLs and Shared Objects
Guarantees they are versions that

work with your applications on all
supported platforms

Makes it easy for the user to install
and update both your stuff and the
3rd party stuff

Eclipse for Users, not Developers

We intend to use Eclipse as a workbench
Something a user can come in and be up and running with in a short time
– Probably with community help

Each user can use and customize it in his or her own way
– (That is what Eclipse provides)

They will probably use it for more than one thing
– That is why the layout by Perspective is important
– You just switch perspectives to change tasks

I think this paradigm is better than using RCP applications
– You provide the plug-ins
– The user manages his Workbench as he or she pleases

EPICS Control System Studio

EPICS IDE : IOC Development

A Perspective Can be a Single Application

X-Ray Experiment

•Images from: BLU-ICE and the Distributed Control System, NOBUGS III, January 2000

Prototype Implementation of ISAW

Includes:
– A Perspective
– An Editor for

ISAW DataSets
• .run, .isd

– Some Views

All work together
– Views change

when the edited
file changes

Area Data Editor - First Scientific Application

Thank You

This has been a

Scientific Software Presentation

Thank You

This has been a

Scientific Software Presentation

