LCLS-I/LCLS-II Machine Protection System Overview

Matt Boyes - LCLS Machine Protection Team
SLAC National Accelerator Laboratory
October 22, 2012
LCLS Overview and General MPS Requirements

Linac Coherent Light Source– (LCLS-I)

• Pulsed X-ray FEL
• Uses last 1/3rd of Linac + new injector, new e- transport line, Undulator and X-ray beam line
• 120Hz maximum rate

General Machine Protection System (MPS) Requirement

- Protect machine components from damage caused by beam within one pulse at 120Hz, by shutting off beam or reducing beam rate.
 • respond within 8.3ms LCLS MPS, actually responds within 2.78ms
LCLS-I MPS Schematic View

MPS Sensors:
- Vacuum Valve Position
- Waterflow Status
- Magnet Power Supply Status
- Temperatures
- In-beam Diagnostics Status
- Beam Position
- Beam Charge
- RF System Status
- Beam Containment Status
- Beam Loss Monitors

MPS Mitigation Devices:
- Laser Heater Mechanical Shutter
- Photocathode Laser Mechanical Shutter
- Gun Trigger Permit
- Pre-Uundulator Fast Kicker (ByKIK)

Injector | Linac | Beam Switchyard | Linac To Undulator (LTU) | Undulator

~1.5Km
System Description – Hardware

- A star network consisting of two entities: Link Processor and 33 Link-Nodes
- Interconnected over private MPS GigbE Network

MPS Link Processor

MPS Link Node
Link-Node Architecture

• 3u chassis with configurable board arrangement
 - Main motherboard with arrangement of other boards

• Contains:
 - MPS “Engine” in Virtex-4 FPGA
 - MPS Digital I/O, up to 96 inputs
 - Embedded Coldfire Arcturus uC5282 CPU for an EPICS IOC but has no safety function
 - Industry Pack (IP) bus interface
 - GigE Interface (FPGA core)
 - USB 1.0 Interface (dev & maintenance)

• Configured in different “flavors”:
 - Standard (MPS Digital I/O Only)
 - BLM (Undulator Beam Loss Monitor)
 - PIC (Beam Loss Ion Chamber)
 - ByKIK (Fast Kicker Magnet)
System Description – MPS Architecture

- **MPS Configuration Editor**
 - MPS Configuration RDB and files
- **MPS Logic Editor**
 - MPS Logic RDB and files
- **MPS Link Processor**
 - Timing data
 - Compile time & runtime files
 - Dedicated GbE over Cat5
- **GbE Switches**
 - Dedicated GbE over Fiber
 - GbE over Cat5
- **MPS Link Node**
 - Analog & digital I/O
 - Device
 - Mitigation Device (Gun Permit)
 - GTM
 - Mitigation Device (Lsr Htr Shutter)
 - Mitigation Device (Mech. Shutter)
- **MPS History GUI**
 - Java, on linux server
- **MPS History Server**
 - Java, on linux server
 - MPS History RDB
- **Interlocks & MPS (iMPS)**
 - 100BASE-TX
 - LCLS CA Network
- **LCLS CA Network**
 - Soft Input
 - Soft Input
 - Soft Input
System Description – Software

MPS Link Processor IOC
- Gathers device status from Link Nodes.
- Determines maximum allowed beam rate at each mitigation device.
- Broadcasts “Permit” message to Link Nodes.
- Handles fault bypassing, latching.
- Logs machine state changes with MPS history servers.
- Can load/unload MPS logic at run-time.

Interlocks MPS Processor IOC
- Supplement VME IOC
- Handles many MPS Soft EPICS Inputs

MPS Link Node IOCs
- Interfaces to on Board FPGAs
- Configuration, Control of MPS loss monitor devices
Link Processor Input and Logic Algorithm

- As Of Oct 2012 LCLS-I MPS handles
 - 2500+ Inputs
 - 670+ Logic Tables
 - 52,000 lines of source code just for the logic algorithm all of which is dynamically created
 - Logic and Input Configuration information stored in a system configuration relational databases
 - Expert Tools developed to interface with Input Configuration Database and Logic Database
Input Configuration

• **Configuration file exported to .db, .edl, .stt, .h, .tex, and .csv using Python module during make**

 - **.csv**
 – LN and LP boot time configuration
 - **.db**
 – LP EPICS records (five records per input)
 - **mpsEpicsFaultInputs.stt**
 – LP state notation used at compile time – monitors EPICS fault inputs
 - **MPSFaultNumbers.h**
 – LP and MPS Logic compile time configuration
 - **.edl**
 – EDM displays for users
 - **.tex, .pdf**
 – LaTeX documentation converted to PDF
 - **mpsdb.sqlite3**
 – Copy of configuration file for MPS GUI
 - **MPSDatabase.sql, pvlist.txt** – Dumped configuration file
 – List of records in .db files
Logic Configuration

- **Logic file exported to** `.h`, `.tex`, `.txt`, `.pdf` and `.csv` using Python module during `make`

 - **Algorithm.h**
 - Loadable and unloaded from LP at run time – Built against a specific MPS Input configuration
 - Logic Table Definitions
 - Can contain C specific logic for more complex logic

 - ***.pdf, *.txt**
 - Logic documentation

28.4 HXRSS State

The following code assigns the truth table’s state number to the variable `state`.

```c
state = 0 : (128 Hz) burn allowed, HXRSS on
state = 1 : full rate (128 Hz) burn allowed, HXRSS off
state = 2 : full rate (128 Hz) burn allowed, HXRSS SAFE (aka phase shiftless mode)
state = 3 : no burn allowed, undefined state
```

- Initialize to a good value
- `state = (assigned state) - 1`

```c
if (state == 0)
    // HXRSS on, the raft is in...
else if (state == 1)
    // HXRSS off, the raft is...
else if (state == 2)
    // HXRSS SAFE mode, the raft is...
else
    // Otherwise, do not allow burn.
```

- Ignored when A-line B1/3 is Not On AND A-line Kicker Is Not Enabled, A-line SL10 is Closed, B31/B32 is Off, B15 Is On, TD1 is In, or VG B2/4 Is In.
LCLS-I MPS GUI

Main MPS Fault User Interface

Some logic is being masked because A-Line B1/B2 is Not On AND A-Line Kicker is Not Enabled, A-Line SL10 is Closed, BX01/BX02 is On, BXG is Off, M3H Mirror is Out of Beam, Stopper HFF-MPA-02 is

Summary State History

Currently showing states 1 of 1
12/17 21:00:37

Bypassed Faults

Exp Date Truth Table Current State
12/09 11:38:00 Flowswitch BSV RAD LCW Slit 10/30 Off

Summary / Faults / Logic / Ignore Logic / History /
MPS Gui Summary of Input Status and Logic Table

States

Filter

Area | LTU1
Card | 30
Channel | 26
Link Node ID | 39
Description | PIV::LTU1:712:PDL,H

Auto recoverable: No Desirable: No

OK State Name | E_OK
Faulted State Name | E_SYS_BUSY

Position X | 0
Position Y | 0
Position Z | 0

Current State: ●

View Logic

Summary/ Faults / Logic / Ignore Logic / History/

Where:

Current PV

Latched PV

Bypass Act PV

Bypass Vol PV

Summary/ Faults / Logic / Ignore Logic / History/

EPICS Collaboration Meeting Fall 2012 @ PAL
October 22 ~ 26, 2012
MPS History

- Independent MPS Logging System
- Logs MPS events such as Faults and Rate Changes
- MPS Messages are also forward to the our standard EPICS Message Logging System
- No Message Throttling
- Messages stored in Oracle
LCLS-I MPS Improvements and Challenges

• Improvements
 - Automated Rate Recovery
 - Enhancing Expert User Tools and MPS GUI
 - Undulator Beam Loss Monitor beam synchronous acquisition

• Challenges
 - System is large and complex
 - requires a team to support and maintain
 - Link Node Embedded Coldfire Arcturus CPU is under powered and is easily overwhelmed
LCLS-II Injector construction has just started
LCLS-II System MPS Overview

Link Nodes

<table>
<thead>
<tr>
<th>Injector</th>
<th>Sector 10</th>
<th>Sector 20</th>
<th>Sector 25</th>
<th>Sector 30</th>
<th>Bldg 136</th>
<th>Bldg 911</th>
<th>Bldg 912</th>
<th>Bldg 921</th>
<th>EH2</th>
</tr>
</thead>
</table>

Link Nodes

- M – Mitigation
- P – PIC
- B – BLM
- BY - BYKIK

EPICS Collaboration Meeting Fall 2012 @ PAL
October 22 ~ 26, 2012
LCLS II Specific MPS Enchantments

- The LCLS MPS Architecture will be duplicated for LCLS-II and will incorporate some additional improvements
 - LCLS-I and LCLS-II should not interfere with each other
 - Determine which machine was the source of beam losses
 - 2 Undulator beam lines each sharing the Linac rate
 - Separate Undulator Rate Control
 - Exploring alternatives to Protection Ion Chambers and Beam Loss Monitors such as Beam Loss Fibers
 - Exploring Link Node inputs enhancement to support temperature monitoring and General Purpose Analog Inputs
Thank You