
Using Message Broker with EPICS:

SPX Controls Use Cases

Siniša Veseli
Software Engineer

AES / Software Services Group

EPICS Collaboration Meeting

October 5, 2013

EPICS Collaboration Meeting October 5, 2013

Outline

 About SPX

 Why Use Message Broker?

 SPX Controls Software

 Performance Measurements

 Summary

EPICS Collaboration Meeting October 5, 2013

2

Motivation

 EPICS/Message Broker Integration

 Performance Testing Results Involving EPICSv4

About SPX

 SPX: Short-Pulse X-ray project

 Originally one of the major goals of the APS Upgrade (APS-U)

- Addressed the need for intense, tunable, high-repetition rate,
picosecond x-ray pulses

- Ultimate goal: deliver short (2ps) x-ray pulses at 6.5 MHz

 Technically most complex part of the APS-U

- 2 cryomodules, each with 4 superconducting rf deflecting cavities
operating at 2815 MHz

- Must keep at minimum disturbance of the storage ring during user
operation

- SPX0 Systems: 2 cavity cryomodule, used for testing

 Not compatible with the recent APS-U direction (evaluating
incorporation of the Multi-bend Achromat Lattice)

EPICS Collaboration Meeting October 5, 2013

3

EPICS v4 Group Meeting September 10, 2013

4

SPX Controls Use Cases

 Keep up with LLRF Controllers (data rates of up to 15 MB/s per Controller)

 Access to complex data structures

 Real-time access to monitoring and diagnostics data to multiple users/tools
simultaneously

 Ability to access real-time data using Matlab/Octave

 Data storage services

 Cataloging services

 Fast logging system

5

EPICS Collaboration Meeting October 5, 2013

Why Message Broker?
 Advanced Message Queuing Protocol (AMQP) supports wide variety of

communications patterns and is frequently used in enterprise applications:

- Real-time feed or constantly updating data

- Advanced publish-and-subscribe

 Number of freely available AMQP broker/client implementations

 Can we leverage some of the available AMQP tools for EPICS applications, not as a
replacement for CA/PVA, but alongside those?

6

EPICS Collaboration Meeting October 5, 2013

7

EPICS Collaboration Meeting October 5, 2013

Plugin Performance: Testing

 LLRF4 Driver (SPX0) collects data in 32 KB “chapters” (16 I/Q waveforms with 512
integers)

 LLRF “data burst” size is determined by couple of EPICS PVs:

- Number of chapters to collect in a single ND array

- Number of ND arrays to collect and stream

 LLRF data bursts are associated with numerous ND Attributes (sent separately from
actual ND Array data)

 LLRF IOC has 3 streaming plugins:

- TCP (uses asyn v4.18 IP port driver, about 3.1K lines of support code)

- PVA (uses EPICS v4.3.0 RPC client, about 2.1K lines of support code)

- AMQP (Apache QPID v0.20, about 1.7K lines of support code)

 Client-side performance was measured in terms of time required to pack and send
one ND array data to a service running on a remote host over a gigabit network

 Measured times do not include service processing time, but in case of PVA they
include empty RPC response (less than 2 ms)

 Client machine: i7-3770@3.4GHz, 8GB RAM, 4 cores/8 threads, 1Gbit NIC

 8

EPICS Collaboration Meeting October 5, 2013

9

EPICS Collaboration Meeting October 5, 2013

Plugin Performance: Results

 Software can easily keep up with nominal data rates

 One second’s worth of LLRF ND Array data is processed in about:

 TCP Stream Plugin: 0.15 seconds

 PVA Stream Plugin: 0.30 seconds

 AMQP Stream Plugin: 1.85 seconds (would require 2 threads to keep up)

 PVA plugin performance is a factor of 6 better than AMQP plugin for streaming
arrays (monomorphic data): QPID v0.20 C++ APIs have no support for AMQP arrays
and require sending array elements via lists (very inefficient)

 Comparable PVA/AMQP plugin performance for ND attributes (polymorphic data)

 Preparing/sending initial stream message with about 200 LLRF ND Attributes
(approximately 16KB of structured data):

 TCP Stream Plugin: prepare/send message in under 0.5 milliseconds

 PVA Stream Plugin: 4-5 milliseconds to pack, 4-5 milliseconds to send; initial
call to RPC service takes 100-200 milliseconds

 AMQP Stream Plugin: 3-4 milliseconds to pack, 4-5 milliseconds to send

10

EPICS Collaboration Meeting October 5, 2013

Message Broker Approach: Lessons Learned

 Our Broker Choice: Apache QPID

- Open source, supports AMQP v1.0 and several earlier protocol versions

- Platform Support: Linux, OS X, JVM

- Extensive set of management tools and easy to use APIs

- Client Support: C/C++, Java, Python, Perl, PHP…

- Extensive documentation

- Excellent support for maps/dictionaries

- Extremely flexible and configurable

- Works “out of the box”

- Active user community, large user base

 QPID-related Issues:

- Inadequate API support results in subpar performance with arrays

- No client support for VxWorks

 General issues:

- Not all brokers support AMQP v1.0, which is not compatible with earlier
protocol versions

11

EPICS Collaboration Meeting October 5, 2013

Summary

 One can successfully integrate message-oriented middleware into EPICS-based
systems alongside CA/PVA

 Main advantages of this approach:

- Flexibility

- Ability to leverage large number of freely available (open source) tools and
frameworks

 AMQP is an open standard protocol that ensures interoperability between
different implementations of messaging providers/clients

 Broker choice impacts performance, platform/language/feature support, ease of
use, configuration options, etc.

12

EPICS Collaboration Meeting October 5, 2013

Future Work

 Utilize SPXRF Controls software/techniques to enhance existing diagnostics and
DAQ tools at APS

- Deploy Real-time Feedback IOC and accompanying services to production

Additional Slides

13

EPICS Collaboration Meeting October 5, 2013

SPX Controls Requirements

 The entire SPX system must be thoroughly integrated with the existing APS
storage ring controls, timing, and diagnostics

 Provide remote monitoring and control to all SPX subsystems consistent
with APS standards and existing OAG tools

- Data must be stored in SDDS (Self-Describing Data Sets) format

 Provide the necessary interfaces between the SPX and other APS systems
as required by the SPX needs (e.g., RTFB, MPS, Event System, etc.)

 Provide a real-time data processing environment for the SPX control
algorithms to ensure they can be executed at the necessary rate

 Provide thorough diagnostic information and tools to assist in quick
determination of SPX performance and post-mortem fault analysis
(required for maintaining high availability)

14

EPICS Collaboration Meeting October 5, 2013

Why Message Broker?

 Advanced Message Queuing Protocol (AMQP) supports wide variety of
communications patterns and is frequently used in enterprise applications

 Typical use cases:

- Real-time feed or constantly updating data

- Point-to-point messaging

- Advanced publish-and-subscribe

- Delivering messages when destination comes online

- Receiving constant status updates and sending large messages at the same
time and over the same network connection

- Transactional messaging

- Communication between diverse programming languages/operating systems

- Remote procedure call patterns

 Number of freely available AMQP broker/client implementations (QPID, ActiveMQ,
RabbitMQ, SwiftMQ…)

 Can we leverage some of the available AMQP tools for EPICS applications, not as
a replacement for CA/PVA, but alongside those?

15

EPICS Collaboration Meeting October 5, 2013

Advanced Message Queuing Protocol

 Originated in 2003 (JP Morgan & Chase, London UK)

 Open standard, v1.0 became OASIS standard in 10/2012

 Wire-level protocol, mandates behavior of messaging providers and clients to
assure interoperability between different implementations

 Few protocol details:

- Basic unit of data: frame

- Nine frame bodies used to initiate, control and tear down message transfer
between two peers

- Messages on a link flow in one direction only

- All message transfers must be acknowledged (for reliability guarantees)

- Multiple links can be combined in a session

- Application creates (immutable) bare messages that have a body and an
optional list of standard (e.g., message id) and application-specific properties

- Messages may be annotated by intermediaries (via message headers)

- Application data can be in any form/encoding: one can use AMQP for sending
self-describing data

 16

EPICS Collaboration Meeting October 5, 2013

AMQP vs PVA

 PV Access: natural evolution of Channel Access, designed with EPICS applications
in mind (for signal monitoring, scientific data services)

 Data type support:

- Both protocols support all basic (primitive) types and strings

- AMQP also supports Decimal32/64/128, TimeStamp, and Uuid

- AMQP supports described types (primitive type + descriptor), PVA supports
introspection data (describes type of user data item)

- PVA supports Unions, AMQP does not

- PVA supports BitSets (finite sequence of bits)

- Both support composite types (structures)

- Both support Arrays (sequence values of a single type)

- AMQP supports (polymorphic) Lists and Maps (polymorphic mapping from
distinct keys to values)

 PVA channel: connection to a single named resource that resides on some server
(client-server model)

 AMQP type systems involve broker as intermediary: messages on a link flow in one
direction only

17

EPICS Collaboration Meeting October 5, 2013

AMQP vs PVA

 Protocols utilize different channel/link management

 Both protocols have a concept of control vs. application messages

 PVA application message headers are fixed size (8-byte long)

 PVA has predefined messages types (e.g., channel get, channel put, channel put-
get, channel monitor, channel array, etc.)

 PVA servers must broadcast beacon messages over UDP (beacons are used for
announcing new servers and server restarts); PVA channel search messages are
typically sent over UDP, while data transmission uses TCP

 AMQP is built on top of TCP

 AMQP has built in support for transactions and security

 PVA: optimized for performance, geared towards simplicity and efficiency

 AMQP: more flexibility, more complexity

18

EPICS Collaboration Meeting October 5, 2013

19

EPICS Collaboration Meeting October 5, 2013

