
pvmanager status
with tool strategy and architecture

Gabriele Carcassi - BNL

Architecture objectives

• Architecture that can last for the next decade
– A place for everything and everything in the right place

• Modularity
– Allow small contributions
– Lower the risk, compartmentalize failure
– Cooperate on parts common to other labs without forcing

the whole

• Allows use of coming technologies
– Multi-core
– High-resolution displays
– Tablets
– GPU

pvmanager timeline
2011/9

v1.0
Write support

Timeout

v1.1 2012/8
epics-util
graphene
Formulas

Pause/resume
Datasource ease-of-impl

 v0.1 2010/10
Queuing/caching

Rate handling
Aggregation
CA support

2010/2
First skeleton

v0.2 2010/11
Sim support

2010 2013 2014 2011 2012

v0.3 2010/11
Error handling
Performance

v0.4 2011/1
Waterfall

v0.5 2011/5

2013/2

v2.0
Major refactoring

PVA support
Non-channel data

Channel debug info
Dynamic PV map

v2.1 2013/3

v2.2 2013/6
Services

JDBC Services
CSV

v2.3 2013/10
Exec services

P
u

b
lis

h
/s

u
b

sc
ri

b
e

C
S-

St
u

d
io

IOC

CA client (JCA/CAJ)

IOC … IOC

pvA client

IOC …
v3 v4

…

AccelUtils

Command/response

v4

Masar

Web based REST services

...

Olog

ChannelFinder API

API

…

API

…

pvmanager core

pva … ca Data Sources

Processing

Visualization

vTypes Data Definition

BOY

cf

Aggregation

General purpose clients

Specialized clients

Log Viewer

Channel Viewer

DataBrowser

…

…

formula

graphene

…

Registry

Bindings

pvm services

masar

CS-Studio core

Core Java Client

Databases Command-line

NEW! NEW!

New in pvmanager ca datasource

• No resources to officially support JCA (CAJ only)
– It kind of works, but no time to make sure it does

• Couldn’t even get it to work on Win64

– JCA has 2 or 3 actual implementation inside. CAJ has one. All
these implementations do not follow the same multi-threading
semantic
• You can’t be sure on what thread you are notified and with what lock

– It makes it impossible to have one implementation for
everything that is both correct and efficient

– Better to invest the time in just one version and fix all the
outstanding issues there

• Maintainer for JCA (JNI) and pvmanager integration

New in pvmanager ca datasource

• Improvements in CAJ (Murali + Matej + Gabriele)
– More efficient handling of large arrays (not so new)
– More uniform to C client library (not so new)

• DBE_PROPERTY support
• Variable sized array
• MAX_ARRAY_BYTES

– Fixing hard to reproduce bugs
• Infinte loop in reconnect
• Large number (750000) of channels connecting to the gateway

• Improvements in CA pvmanager datasource
– Encapsulate “quirks” from CA (not so new)

• Value only for RTYP
• Long string support (reads VString from byte array)
• Can choose between put and put-with-callback
• Autodetects if var array is supported

– Metadata monitor (not so new)
– Various bug fixes and performance improvements from usage (not so new)

• Lower connection priority for large arrays

Murali and Matej are awesome!

New in pvmanager pva datasource

• Support for EPICS v4 pvAccess (in CS-Studio)
– Publish/subscribe support (see later for services)

• Types supported:
– Scalar (VNumber, VEnum and VString)

– Array (VNumberArray and VStringArray)

– Table

– Matrices (VNumberArray 2D)

– Images

• Work done Matej

New file datasource

• File datasource, allows to read files
– file://path/to/file
– Parses CSV tables
– Handles images (png, bmp)

• It’s mainly a stub
– Add notification if file is update
– Improve CSV parsing
– Support for other files (matlab, excel, HDF5, …)

• Looking for volunteer to expand it

Goals for pvmanager core

• Provide logic required by well-behaved application
– Queuing or caching

– Rate decoupling between subsystems (typically CA and UI,
but also CA and anything else)

– Rate limiting (notification rate capped)

– Rate throttling (notification rate adapts, skips instead of
building up lag)

– Shared connections (similar requests on a single monitor)

– Ability to offload work on a shared pool

• You still need to understand what all of this is

• You just don’t have to implement it

New in pvmanager core

• Becoming the main way to access data in CS-
Studio

• Significant refactoring in 2.0 (02/2013)

– Cleaner interface

– Dynamic map

• add/remove pvs, always get a single event with all
values

– Channels can report properties for extra
debugging information

New in pvmanager core

• Probe can display the
extra properties

• Note the long string
support:

– The value is vString

– The channel type is
DBR_TYPE

epics-util

• Placeholder for utility classes that hopefully will appear
in standard Java at some point

• org.epics.util.array – numeric collection
– Read only view, lazy computation/functional programming,

single binding for all numeric types instead of 6 (double,
float, long, int, short, byte), circular buffers, sorted views

• org.epics.util.time – time definitions and formats
– Timestamp, TimeDuration, … while we wait for Java 8

• EPICS macro substitution,
 unsigned primitive math,
 common configuration mechanism

New in vTypes

• Control system data interfaces for Java client
• Taken out of pvmanager so they can be used for

services
• VNumber and VNumberArray superclass
• Value to text formatting
• More consistent toString implementation
• VTable columns can contain timestamps
• First steps for exporting to CSV

• Improve import/export (CSV, matlab, HDF5),

 common value formatting

EXPORT VTYPE TO EXCEL

Goals for pvmanager formulas

• Current problems:
– New type (i.e. table) or new service (i.e. channelfinder) means

having to write new widgets and applications
• Difficult to extend the tools

– Each widget and application has to implement behavior that
may be common, for example:
• Display the alarm/time instead of the value
• Display the value of the enum instead of the label
• Display the FFT instead of the waveform
• Display value in different unit
• Options will be slightly different, more work and code to maintain

• This functionality should neither be in the datasources nor
the widget
– Need a better place!

pvmanager formulas

• Allow to specify formulas everywhere you had pvs
• Currently implemented

‘mypv’ pvs in single quotes
“Some text” text literals in double quotes
3.14 numeric literals with standard C/C++/Java
notation
‘pv1’ – ‘pv2’standard math operators
log(‘mypv’) functions, pluggable in CSS
 java.lang.Math methods already implemented
arrayOf(‘pv1’, ‘pv2’, ‘pv3’) coverts scalars into arrays
columnOf(‘tablepv’, “column1”) column from table as an array

 Unit conversion, function fit, linear algebra, full join

Functions
• Numeric operators

• + - * / % ^ **
• > < >= <= == !=
• ?:
• || &&
• | &

• Math functions
• abs
• acos
• asin
• atan
• cbrt
• ceil
• cos
• cosh
• exp
• floor
• integrate
• log
• log10
• signum
• sin
• sinh
• sqrt
• tan
• tanh
• toRadians
• toDegrees

• Array functions
• + - / *
• arrayOf
• elementAt
• rescale
• subArray

• Table functions
• columnOf
• join
• tableOf

• String function
• concat
• toString

• Pointer-like function
• pv
• pvs

• Other functions
• highestSeverity

pvmanager formulas

• Formula in Probe

• Function viewer
lists all the
contributions
and serves as
documentation

pvmanager formulas

• columnOf(‘sim://table’, “value”)

value column

index column

pvmanager formulas

• Can register functions through extension point
• We expect to:

– Significantly increase the functionality
– Reduce the complexity

• Fewer widgets
• Fewer parameters per widget

– Increase consistency within CS-Studio

• If formulas become important for the whole of CS-
Studio, makes it possible to have:
– Formula editors
– Syntax coloring
– Autocomplete (Already being contributed by ITER!)

Formula auto-complete

Formula auto-documentation

Goals for graphene

• One year ago we started working on a graph
package with the following goals:

– Interfaces for datasets

– Rendering without UI

– Changes are thread-safe and atomic

– Publishable quality

– Performance suitable for “large data” in real time

New in graphene

• Current status
– Further ahead but not as far as I’d like

– Four graphs are in decent shape:
• Scatter graph

• Line graph

• Area graph

• Bubble graph

– Common patterns are starting to drive the
architecture
• Common elements to create the axis

• Common elements to handle the dynamic range

B u b b le g ra p hA re a g ra p h

(h isto g ra m)

L in e g ra p h

S ca tte r g ra p h

Graphene in CS-Studio

• Line graph and scatter graph available as:
– SWT widgets

– BOY widgets

– Independent views

• Table is king
– Re-implemented to work off of tables

– Does not work for histogram and intensity graphs,
though
• Have already ideas on how to extend VNumberArray with

range information

graphene performance

• LineGraph performance improved through data reduction
– For each pixel draw 4 values: first, max, min, last

• Displaying 100,000 points, 300x200
– How many differences can you find?

Without data reduction - 255.4 ms With data reduction - 6.077 ms

graphene

• Line graph, 600x400, JDK 7, i7 2.70GHz

0.1

1

10

100

1000

10000

100000

1 100 10000 1000000 100000000

NONE

FIRST_MAX_MIN
_LAST

N points Time ms
(no redux)

Time ms
(redux)

10 0.986232349 0.980788919

100 1.924796332 1.872743481

1,000 5.553831552 5.345118646

10,000 38.57528235 15.73147583

100,000 431.8435542 18.28121567

500,000 4280.394044 26.20789778

1,000,000 15556.68846 36.36819781

10,000,000 257.451379

50,000,000 1178.120411

N points

ms

GRAPHENE LINE GRAPH DEMO

Goals for pvmanager services

• Services cannot be integrated with standard
pvmanager: a service is not a pv
– Needs parameters
– Needs someone to click send (services are not

idempotent in general)
– Each client needs its own return value
– The result can be complex and may need several

widgets to display

• In general, you’ll need service specific APIs and
applications, with specific workflow
– There is no way around it

Goals for pvmanager services

• BUT! Some services in some cases
– Have parameters that can be expressed by vTypes

(e.g. VString and VNumbers)
– Can return data that can be expressed in a vTable,

vNumericArray, …
– These can be digested by general purpose clients

• For example, channel finder
– Will need a specific UI to manage tags and properties
– Can export into a table the result of a query

• For the general purpose only we introduce
pvmanager services

pvmanager services

public abstract class ServiceMethod {

 public String getName();

 public String getDescription();

 public Map<String, Class<?>> getArgumentTypes();

 public Map<String, String> getArgumentDescriptions();

 public final Map<String, Class<?>> getResultTypes();

 public Map<String, String> getResultDescriptions();

 public abstract void executeMethod(

 Map<String, Object> arguments,

 WriteFunction<Map<String, Object>> callback,

 WriteFunction<Exception> errorCallback);

}

PVMANAGER SERVICES DEMO

jdbc services

• Services that execute database queries

– Xml files can be places in
$cs-studio/configuration/services/jdbc

– Each service is a database with a set of
parameterized queries

– Parameters can be VString/VNumber/…

– Results are VTable

 Maintainer to extend implementation

jdbc service example

<?xml version="1.0" encoding="UTF-8"?>

<jdbcService ver="1" name="jdbcSample" description="A test service">

 <jdbcUrl>jdbc:mysql://localhost/test?user=root&password=root</jdbcUrl>

 <methods>

 <method name="query" description="A test query">

 <query>SELECT * FROM Data</query>

 <result name="result" description="The query result"/>

 </method>

 <method name="insert" description="A test insert query">

 <query>INSERT INTO `test`.`Data` (`Name`, `Index`, `Value`) VALUES (?, ?, ?)</query>

 <argument name="name" description="The name" type="VString"/>

 <argument name="index" description="The index" type="VNumber"/>

 <argument name="value" description="The value" type="VNumber"/>

 </method>

 </methods>

</jdbcService>

exec service

• Exec services, services based on command-
line execution

– Xml files can be places in
$cs-studio/configuration/services/exec

– Each service is a set of parameterized commands

– Parameters can be VString/VNumber

– Result is a VString or VTable (if output is a CSV)

– Generic exec/run service to execute an arbitrary
command (a VString)

exec service example

<?xml version="1.0" encoding="UTF-8"?>

 <execService ver="1" name="execSample" description="A test service">

 <methods>

 <method name="echo" description="A test script">

 <command>echo You selected #string#</command>

 <argument name="string" description="The string" type="VString"/>

 <result name="result" description="The result"/>

 </method>

 <method name="script" description="My script">

 <command>myscript.py #value#"</command>

 <argument name="value" description="The value" type="VNumber"/>

 <result name="result" description="The script result"/>

 </method>

 </methods>

</execService>

Maintainer to extend implementation

pva service

• Working with Cosylab to create a pva to
pvmanager service binding that looks similar

– Write xml file

– Put it in the configuration directory

– CS-Studio is aware of the service

Framework for real time
data manipulation

• pvmanager datasources: pluggable sources of live data

• pvmanager services: pluggable sources of static data

• pvmanager formula functions: pluggable ways to
combine the data

• Graphene graphs: hopefully efficient way to display the
data

• VType export: ways to export the data

Users can now quickly and safely combine these!

Infrastructure

• Projects are on SourceForge

– http://epics-util.sourceforge.net/

– http://pvmanager.sourceforge.net/

– http://graphene.sourceforge.net/

• Built on cloudbees (Jenkins in the cloud)

– https://openepics.ci.cloudbees.com/

• Libraries deployed in maven central
– http://search.maven.org/#search|ga|1|g%3A%22org.epics%22

http://epics-util.sourceforge.net/
http://epics-util.sourceforge.net/
http://epics-util.sourceforge.net/
http://epics-util.sourceforge.net/
http://pvmanager.sourceforge.net/
http://pvmanager.sourceforge.net/
http://graphene.sourceforge.net/
http://graphene.sourceforge.net/
https://openepics.ci.cloudbees.com/
https://openepics.ci.cloudbees.com/
http://search.maven.org/search|ga|1|g%3A%22org.epics%22
http://search.maven.org/search|ga|1|g%3A%22org.epics%22

Still a lot more work to do …

… if you want to help make progress

Take something over

• Having an architecture does not mean that
everything is done

– Just means everything has a place

• Many things could be developed a lot better
and farther

– CSV import/export, exec services, jdbc services,
file datasource, formula functions for physics, …

• Always looking for people to take over pieces

Gathering requirement

• Used to talk to multiple people before implementing
anything. This has become impossible at this point.

• This is the current process for a new spec:
– Whenever I need to make a substantial choice, I open a

github issue with a proposal

– Wait for feedback on that proposal

– Follow up whenever I am implementing something

– Close even if not enough review

• For changing spec:
– Open issue on github

– All sites need to sign off change if breaks compatibility

