
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

User’s Guide for EPICS Lua–Based

Data Processing Subscription

Update Filters

Jeffrey O. Hill

October 2nd 2019

NOTE:

This is

the lab

color

palette

.

User’s Guide for EPICS Lua–Based Data Processing

Subscription

Update Filters

10/3/2019 | 2 Los Alamos National Laboratory

October 2nd 2019

ICALEPCS 2019

EPICS Workshop

• Lua – A Brief Introduction

• Channel Name Postfix Syntax

• Filter Interface

• Factory Interface

• LANSCE Filter Specifications

• LANSCE Example EDM Screens

• Record Subordinate Properties

• Device Subordinate Properties

• Source Code Examples

• Filter Installation

• Conclusions

NOTE:

This is

the lab

color

palette

.
Lua – A Brief Introduction

Los Alamos National Laboratory 10/2/2019 | 3

• Lua embeddable language was created in 1993

– By members of the Computer Graphics Technology Group (Tecgraf) at the

Pontifical Catholic University of Rio de Janeiro, in Brazil.

• "Lua" (pronounced LOO-ah) means "Moon" in Portuguese

• Interpreted, compiled to byte-code, dynamic typed

• A mixture of C-like and Pascal-like syntax

• Efficient virtual machine execution, small footprint, incremental

garbage collection, robust error handling, easily interfaced to C code

• Comprehensive feature set, powerful adjunct-libraries written by an

active user community

• Well proven for configuration, scripting, and rapid-prototyping

– A strong return-for-effort candidate for functionally upgrading EPICS

• Liberal MIT license

NOTE:

This is

the lab

color

palette

.
Lua – A Brief Introduction

Los Alamos National Laboratory 10/2/2019 | 4

• I have also introduced Lua at previous EPICS meetings

– Alternative EPICS shell, Lua scripting record …

• Also a paper / poster in this conference

• There are some negatives

– In particular, with Lua the default scope of variables is global, arrays start at

one although storing data at index zero isn’t prohibited, and there is

ambiguity between nil-valued contrasted with non-existent table elements

– Lua lacks support for user-defined-type dedicated memory allocators

appropriate within memory constrained systems

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Channel Name Postfix Syntax

Los Alamos National Laboratory 10/3/2019 | 5

• Filters are configured with a snippet of Lua code

– Specified within a CA channel-name postfix

• Postfixes are supplied in two basic forms

– Channel name, followed by percent sign, followed by brackets

• Direct acting filter

– <pv name>%[<lua code>]

• Filter or channel object factory

– <pv name>%{<lua code>}

• No need for revising of CA Client general-purpose community

obtained application programs

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Channel Name Postfix Syntax

Los Alamos National Laboratory 10/3/2019 | 6

• Direct acting Lua filter examples

• Emulating Lua long literal strings

– Optional matching long brackets also delineate the postfix

– For example %[[]], %{={}=}, or %[===[]===]

myPV%[val >= 3.2 and val <= 3.4]

myPV%[val.alarm.condition.severity~=0]

myPV%[3.4<val]

myPV%[==[val%3.4 [[nested comment]]]==]

myPV %[val==3.2]

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Channel Name Postfix Syntax

Los Alamos National Laboratory 10/2/2019 | 7

• Lua factory examples

myPV%{myFilterFactory ('blue')}

myPV%{myChannelFactory()}

myPV%{ myApplicationsFactory(10,2) }

myPV % {flavour('savoury')}

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Filter Interface

Los Alamos National Laboratory 10/2/2019 | 8

• Filter functions are called

– Passing the subscription update, in an argument named val

– This update value argument is as an ordinary Lua variable

• val >= 3.2 and val <= 3.4

– The update value argument also indexes subordinate properties

• val.alarm.condition.severity

– Subordinate properties are themselves also ordinary Lua variables

• val.alarm.condition.severity~=0

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Filter Interface

Los Alamos National Laboratory 10/2/2019 | 9

• Filters return

– Nil

• Suppress update

– False

• Suppress update

– True

• Forward update unmodified

– Data

• Forward update replacing it

– With the returned scalar value or vector element sequence

• Used at LANSCE

– To time-slice waveform

• Used for a private protocol

– Filter to client-side application selecting it

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Factory Interface

Los Alamos National Laboratory 10/2/2019 | 10

• With Lua, functions are first class values

– They can be stored in variables

– They can be passed as arguments to other functions

– They can be returned as results from functions

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Factory Interface

Los Alamos National Laboratory 10/2/2019 | 11

• Channel name postfix factories are called

– Passing the channel name, in an argument named chanName

• Channel name postfix factories return

– False

• Permanently disables all updates

– True

• Permanently enables all updates

– Function

• Becomes the direct acting subscription update filter

– Channel object

• If this channel object provides a filterFactory method

– It will be called with the arguments below to create a channel context filter

– filterFactory (channel, lowDelta, highDelta, timeout)

» Returning same as channel name postfix factories

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – LANSCE Filter Specifications

Los Alamos National Laboratory 10/2/2019 | 12

1. Selects cycles with gate H+IP and also sans both gates H-GX and MPEG

2. Replaces the payload with elements 50 through 150 of the waveform data

3. Selects cycles that have beam gate H+IP, replacing the CA payload with the first

150 µs of the waveform.

4. Replaces the CA payload with -30 through -10 µs of waveform data before the

falling edge of gate MPEG, selecting only cycles containing MPEG.

5. Replaces the CA payload with 100 µs after waveform rising edge through 150 µs

before waveform falling edge selecting only cycles containing LPEG

6. Selects 100 µs after gate T0 through 15 µs before waveform end for any flavour.

1 XXTDAQ001D01%{flv('H+IP no H-GX MPEG')}

2 XXTDAQ001D01%{tim('(50:150)em')}

3 XXTDAQ001D01%{flv('H+IP','(0:150)us')}

4 XXTDAQ001D01%{tim('~MPEG(-30:-10)us','MPEG')}

5 XXTDAQ001D01%{flv('LBEG','(100:~(-150))us')}

6 XXTDAQ001D01%{tim('(T0(100):~(-15))us')}

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – LANSCE Example EDM Screens

Los Alamos National Laboratory 10/2/2019 | 13

• LANSCE Linac FPGA-Embedded Beam Position and Phase IOC

– Typical time window

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – LANSCE Example EDM Screens

Los Alamos National Laboratory 10/3/2019 | 14

• LANSCE Linac FPGA-Embedded Beam Position and Phase IOC

– Start of the pulse, before beam has stabilized

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – LANSCE Example EDM Screens

Los Alamos National Laboratory 10/2/2019 | 15

• LANSCE Isotope Production Facility raster patterned beam position

– Last 100 µ sec

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – LANSCE Example EDM Screens

Los Alamos National Laboratory 10/3/2019 | 16

• LANSCE Isotope Production Facility raster patterned beam position

• Last 200 µ sec

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Record Subordinate Properties

Los Alamos National Laboratory 10/3/2019 | 17

• The waveformx record provides Data Access Catalog container

interface adapters for subordinate properties in the table below

– Sourcing these properties from the fields of the record

Property Field Type
val.staticMetadata.revisionNumber size_t

val.staticMetadata.filterFactory FILT string

val.staticMetadata.capture.samplesPerSec SPS double

val.staticMetadata.capture.trig.name TRIG string

val.staticMetadata.capture.trig.offset OFFS double

val.staticMetadata.capture.trig.

edgeRisingNotFalling

EDGE bool

val.device PDEM container

interface

smart-pointer

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Record Subordinate Properties

Los Alamos National Laboratory 10/3/2019 | 18

• The waveformx record provides Data Access Catalog container

interface adapters for subordinate properties

–val.staticMetadata.revisionNumber

• For detecting that static meta-data has changed

–val.staticMetadata.filterFactory

• Lua source code implementing a default filter factory

– Used when channel name postfix is absent

–val.device

• Smart-pointer to the Data Access Catalog container interface

• Device support supplied properties

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Record Subordinate Properties

Los Alamos National Laboratory 10/3/2019 | 19

• The waveformx record provides Data Access Catalog container

interface adapters for capture subordinate properties

–val.staticMetadata.capture.samplesPerSecond

• Waveform sample rate

–val.staticMetadata.capture.trig.name

• Digitizer trigger name

– Interpreted as the gate name at LANSCE

–val.staticMetadata.capture.trig.edgeRisingNotFalling

• Digitizer trigger edge

–val.staticMetadata.capture.trig.offset

• Digitizer trigger time offset correction

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Device Subordinate Properties

Los Alamos National Laboratory 10/2/2019 | 20

• At LANSCE, we provide Data Access Catalog container interface

adapters for the device subordinate properties in the table below

– The schedule array contains bitmask elements encoding the set of gates

scheduled in each of the 120 slots of the LANSCE super-cycle

– The cycleIndex provides the current index in the schedule array

– The gateSet array provides

• time-offset delay and width information for each of the LANSCE gates

– The updateVersion is incremented whenever either of the

• schedule array or the gateSet array is modified by the timing system

 val.device.timing.cycleIndex

val.device.timing.updateVersion

val.device.timing.schedule[i]

val.device.timing.gateSet[i].width

val.device.timing.gateSet[i].delay

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters –Source Code Examples

Los Alamos National Laboratory 10/2/2019 | 21

• The following source codes are in production use at LANSCE

• The LANSCE specific timing and flavouring Data Access Catalog

container interface adapters

– As C++ Data Access Catalog container interface derived classes

– See timedDataApp within

• https://git.launchpad.net/~johill-lanl/+git/lansce-filters

• The LANSCE specific timing and flavouring filter

– As Lua C++ snap-ins

– See timedFilterApp within

• https://git.launchpad.net/~johill-lanl/+git/lansce-filters

• EPICS R3.15 implementing Lua subscription update filtering

• https://code.launchpad.net/~johill-lanl/epics-base/server1

https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://code.launchpad.net/~johill-lanl/epics-base/server1
https://code.launchpad.net/~johill-lanl/epics-base/server1
https://code.launchpad.net/~johill-lanl/epics-base/server1
https://code.launchpad.net/~johill-lanl/epics-base/server1
https://code.launchpad.net/~johill-lanl/epics-base/server1

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Filter Installation

Los Alamos National Laboratory 10/3/2019 | 22

• EPICS build system pre-compilation of Lua source files

1. Lua source-code is compiled to byte-code

2. C source-code, with the Lua byte-code embedded, is generated

• Includes a lua_CFunction method for loading the embedded byte-code

3. C source code is compiled itself into linkable object-code

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Filter Installation

Los Alamos National Laboratory 10/3/2019 | 23

• Complex filters – must be preinstalled and enabled

– Are pre-compiled, and linked, into the EPICS IOC application

– Must be EPICS registry registered functions

• See the application developer’s guide

• Must have lua_CFunction interface

– Return LUA_OK for success, otherwise failure

– Are specifically enabled/installed at runtime

• Using new EPICS environment variable

– EPICS_CAS_LUA_STARTUP_FUNCTIONS

» A white-space separated list of registry function names

– Requires the filter factory form in the channel name postfix

• Constructs and configures using appropriate arguments a pre-installed filter

NOTE:

This is

the lab

color

palette

.

Lua-Based Subscription

Update Filters – Conclusions

Los Alamos National Laboratory 10/2/2019 | 24

• Lua is well proven for configuration, scripting, and rapid-prototyping

– A strong return-for-effort candidate for functionally upgrading EPICS

• Site specific subscription update filter installation is fully supported

– Some examples on the web

• The new EPICS capabilities are in production use at LANSCE

– Are operationally essential at LANSCE

