
asyn − asyn Record

Table of Contents
asyn Record..1

Contents...1
Overview..1
Device Address Control Fields..2
Input/Output Control Fields...3
Output Control Fields for asynOctet..5
Input Control Fields for asynOctet...6
Input/Output Control Fields for Register Interfaces..8
Serial Control Fields..8
GPIB Control Fields...9
Trace Control Fields...10
Connection Management Fields...11
Error Status Fields..12
Private Fields..12
Record Processing..12
Obsolete serial and GPIB records..13
medm screens...14

Main control screen, asynRecord.adl..14
asynOctet I/O screen, asynOctet.adl..15
asyn register device I/O screen, asynRegister.adl...15
Serial port setup screen, asynSerialPortSetup.adl...16
GPIB setup screen, asynGPIBSetup.adl..16
Socket setup screen, asynSocketSetup.adl..16

Example #1..17
Example #2..18

asyn − asyn Record

i

asyn − asyn Record

ii

asyn Record
Mark Rivers and Marty Kraimer

Contents

Overview•
Device Address Control Fields•
Input/Output Control Fields•
Output Control Fields for asynOctet•
Input Control Fields for asynOctet•
Input/Output Control Fields for Register Interfaces•
Serial Control Fields•
GPIB Control Fields•
Trace Control Fields•
Connection Management Fields•
Error Status Fields•
Private Fields•
Record Processing•
Obsolete serial and GPIB records•
medm screens•
Example 1•
Example 2•

Overview

The asyn record is designed to provide access to nearly all of the features of the asyn facility. It includes the
ability to:

Perform I/O to any asyn device that supports the asynOctet, asynInt32, asynUInt32Digital, and/or
asynFloat64 interfaces.

•

Allow EPICS to communicate with a new device without rebooting the IOC, i.e. without writing any C
code or changing the database. This allows Channel Access clients to communicate with devices for
which no EPICS device support exists.

•

In combination with the scalcout record to format output strings and to parse response strings, eliminate
the need for C device support code in many applications.

•

Dynamically change the asyn device "port" and "address", so a single asyn record can be switched from
talking to one device to another at run time.

•

Dynamically change the asyn interface being used for I/O.•
Manage the connection state of a device, i.e. connect/disconnect, enable/disable,
autoConnect/noAutoConnect..

•

Provide access to asynTrace, controlling debugging output for any asyn device.•
Control the the baud rate, parity, etc. for serial ports whose drivers support the asynOption interface.•
Control the GPIB address and execute global and addressed commands for GPIB devices.•
Create asyn socket ports dynamically at run time for new TCP/IP or UDP/IP connections.•

For the asynOctet interface there are two output fields, AOUT (ASCII Output) and BOUT (Byte Output). The
OFMT (Output Format) field is used to select one of these fields or the other as the output source to the device.
Similarly, there are two input fields, AINP (ASCII Input) and BINP (Byte Input). The IFMT (Input Format) field

asyn Record 1

is used to select one or the other as the destination of data sent from the device. The ASCII fields are type
DBF_STRING, and are very convenient for typical communication with many devices. They permit, for example,
medm screens where the user can type a string and observe the response from the instrument. The ASCII fields,
however are limited to 40 characters in length, and cannot be used to read or write binary data. The byte input and
output fields are DBF_CHAR arrays, and can be used to transfer large blocks of arbitrary data, either ASCII or
binary.

 In the "Access" columns in the field description tables:

R Read only

R/W Read and write are allowed

R/W* Read and write are allowed; write triggers record processing if the record's SCAN field is set to "Passive".

N No access allowed

Device Address Control Fields

Name Access Prompt Data type Description

PORT R/W "asyn port" DBF_STRING The asyn "port" name. This field can be
changed at any time to connect the record
to another asyn device.

ADDR R/W "asyn address" DBF_LONG The asyn address. This field can be
changed at any time to connect the record
to another asyn device.

PCNCT R/W
"Port
Connect/Disconnect"

DBF_RECCHOICE

Disconnects or connects the port. Choices
are "Disconnect" and "Connect". The value
read reflects whether there is currently a
valid connection to a port.

SOCK R/W "Socket address" DBF_STRING

The name of a server:port for a TCP/IP or
UDP/IP socket connection. This field can
be changed at any time to connect to a new
socket. It creates a new port with the same
name as the socket string, and connects the
record to that port. Syntax is "server:port
[protocol]", e.g. "corvette:21",
"164.54.160.50:21", or "corvette:21 udp".
The protocol specifier is optional. TCP is
used by default.

DRVINFO R/W "Driver information" DBF_STRING A string that is passed to the driver with
asynDrvUser−>create(), assuming that the
asynDrvUser interface exists. The driver
will update pasynUser−>reason and/or

asyn − asyn Record

2 Device Address Control Fields

pasynUser−>drvUser as a result. If
pasynUser−>reason is changed then the
asynRecord REASON field will be
updated.

REASON R/W
"Reason or
command"

DBF_LONG

A integer "reason" or "command" that is
typically used to tell the driver what item
to read or write. This value is updated
when connecting to the driver, using the
DRVINFO field. It can be changed later
without reconnecting to the driver. If
REASON is changed then the DRVINFO
field will be set to an empty string.

The asyn record does not have traditional INP or OUT fields for input and output links. Rather it provides the
PORT and ADDR fields to allow dynamically changing what asyn device the record is connected to.

Writing to the PORT, ADDR or DRVINFO fields causes the asyn record to disconnect from the current device
and connect to the specified asyn port and address. This permits a single asyn record to be used to control any
asyn device. Writing to these fields does not cause any I/O to be done.

Note that since writing to the PORT, ADDR, or DRVINFO fields cause the record to automatically attempt to
connect to the port, it is usually not necessary to write to the PCNCT field to connect to the port. The PCNCT
field is useful for determining if the port is connected, and for forcing a disconnect if desired.

Writing to the SOCK field causes the record to create a new asyn port with the same name as the SOCK field.
This is done with drvAsynIPPortConfigure.

Input/Output Control Fields

Name Access Prompt Data type Description

VAL R/W "Value field
(unused)"

DBF_STRING This field is unused. The functions normally
assigned to the VAL field in many records are
performed by the AOUT, BOUT, AINP, BINP,
I32OUT, I32INP, UI32OUT, UI32INP,
F64OUT, and F64INP fields in the asyn record.

TMOD R/W "Transaction
mode"

DBF_RECCHOICE The type of I/O transaction to perform when the
record is processed. The choices are:
"Write/Read" (default)

"Write"

"Read"

"Flush"

"NoI/O"

asyn − asyn Record

Input/Output Control Fields 3

IFACE R/W "Interface" DBF_RECCHOICE

The interface to use for the I/O transfer when
the record processes. The choices are:
"asynOctet" (default)

"asynInt32"

"asynUInt32Digital"

"asynFloat64"

OCTETIV R "Octet Is Valid" DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynOctet interface.

I32IV R "Int32 Is Valid" DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynInt32 interface.

UI32IV R "UInt32Digital
Is Valid"

DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynUInt32Digital interface.

F64IV R "Float64 Is
Valid"

DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynFloat64 interface.

OPTIONIV R "Option Is
Valid"

DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynOption interface.

GPIBIV R "GPIB Is Valid" DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynGPIB interface.

TMOT R/W "Timeout (sec)" DBF_DOUBLE

The timeout value for read and write operations
in seconds. If a response is not received from
the device within this time then the record sets a
major alarm. −1.0 means wait forever, no
timeout. Default=1.0

The TMOD field controls what type of I/O is performed when the record processes.

"Write/Read"
(default)

The output data is sent from the selected output field to the device. A response is then read back
into the selected input field. The response must be received within the time specified by TMOT.
For asynOctet the input buffer is flushed before the write operation, so that any characters
received prior to the write operation are discarded. The Write/Read operation is "atomic",
meaning that it is guaranteed that no other asyn I/O to the device will occur between the write
and read operations.

"Write" The output source is sent to the device. No response is read back.

"Read" Data is read from the device into the input field. The response must be received within the time
specified by TMOT. No output is sent to the device prior to the read operation.

"Flush" The input buffer is flushed. Nothing is sent to the device or read from the device. Applies only to
asynOctet.

"NoI/O" The record processes but no I/O is actually performed. This mode can be used as a safety feature
when using an asyn record to just control the trace fields of asyn ports. If the record is in this
mode and is accidentally processed, then no I/O will occur.

asyn − asyn Record

4 Input/Output Control Fields

Output Control Fields for asynOctet

These fields control output I/O when using the asynOctet interface (i.e. when IFACE="asynOctet").

Name Access Prompt Data type Description

AOUT R/W* "Output
string"

DBF_STRING The output string which is sent to the device if
OFMT="ASCII". The number of bytes sent to the
device will be strlen(AOUT) plus
strlen(OEOS).

BOUT R/W* "Output byte
data"

DBF_CHAR
(array)

The output data which is sent to the device if
OFMT="Binary" or "Hybrid". The maximum length
of this field is controlled by OMAX. The actual
number of bytes to be sent to the device when
OFMT="Hybrid" will be strlen(BOUT) plus
strlen(OEOS). The actual number of bytes to be
sent to the device when OFMP="Binary" will be
NOWT.

OEOS R/W "Output
terminator"

DBF_STRING A character string that is appended to the output
before transmission to the device. This field is ignored
if OFMT="Binary". Set this field to "" to suppress
transmission of a terminator. Commonly used values
are "\r" (the default), "\n", and "\r\n".

OMAX R "Max. size of
output array"

DBF_LONG The allocated length of the BOUT array. This value
cannot be changed after IOC initialization.
Default=80.

NOWT R/W
"Number of
bytes to write"

DBF_LONG
The number of bytes to send from the BOUT array to
the device if OFMT="Binary". This value must be
less than or equal to OMAX. Default=80.

NAWT R/W "Number of
bytes actually
written"

DBF_LONG The actual number of bytes written in the last write
operation. This field is valid for all OFMT modes.
This number does not include the output terminator, if
any.

OFMT R/W "Output
format"

DBF_RECCHOICE The output format. The choices are:
"ASCII
"(default)

The data sent to the device will be
taken from the AOUT field.

"Hybrid" The data sent to the device will be
taken from the BOUT field.

"Binary" The data sent to the device will be
taken from the BOUT field.

There are two output fields, AOUT (ASCII Output) and BOUT (Byte Output). The OFMT (Output Format) field
is used to select one of these fields or the other as the output source to the device.

asyn − asyn Record

Output Control Fields for asynOctet 5

If OFMT="ASCII" then the AOUT field is processed with dbTranslateEscape() to convert control characters (e.g.
"\r", "\021") to bytes, the length of the output is determined with strlen(), and the string is sent to the device using
asynOctet−>write. This will append the output EOS if one has been set.

If OFMT="Hybrid" then the BOUT field is processed with dbTranslateEscape() to convert control characters (e.g.
"\r", "\021") to bytes, the length of the output is determined with strlen(), and the string is sent to the device using
asynOctet−>write. This will append the output EOS if one has been set.

If OFMT="Binary" then NOWT bytes from the BOUT field are sent to the device using asynOctet−>write. This
will not append an output EOS.

OEOS is set to the current value for the port when the record connects to the port. If OEOS is modified after the
record connects to the port, then the output EOS will be changed using asynOctet−>setOutputEos.
IMPORTANT: The value of OEOS in the database file is never used, because it is modified when the record
connects to the port.

Input Control Fields for asynOctet

These fields control input I/O when using the asynOctet interface (i.e. when IFACE="asynOctet").

Name Access Prompt Data type Description

AINP R "Input string" DBF_STRING The input string that is read from the device if
IFMT="ASCII". The string will be null terminated.
Note that due to the maximum size of a string in
EPICS, the input string must be less than 40 characters.
If longer strings are required then set IFMT="Hybrid"
and read into the BINP field.

BINP R "Input byte
data"

DBF_CHAR
(array)

The input data that is read from the device if
IFMT="Hybrid" or IFMT="Binary". The maximum
length of this field is controlled by IMAX. The actual
number of bytes read from the device is given by
NORD.

IEOS R/W "Input
terminator"

DBF_STRING A string that indicates the end of a message on input.
Set this field to """ if no input terminator should be
used. This field is ignored if IFMT="Binary".
Commonly used values are "\r" (the default), "\n", and
"\r\n". The input terminator is removed from the input
buffer after the read.

IMAX R "Max. size of
input array"

DBF_LONG The allocated length of the BINP array. This value
cannot be changed after IOC initialization. Default=80.

NRRD R/W "Number of
bytes to read"

DBF_LONG The requested number of bytes to read. This field is
valid for all IFMT modes. If this field is <= 0, then the
requested number of bytes to read will be the EPICS
defined MAX_STRING_SIZE=40 (if IFMT="ASCII")

asyn − asyn Record

6 Input Control Fields for asynOctet

or IMAX (if IFMT="Hybrid" or "Binary"). Default=0.

NORD R "Number of
bytes read"

DBF_LONG The actual number of bytes read in the last read
operation. This field is valid for all IFMT modes. This
number includes the input terminator, if any.

IFMT R/W "Input
format"

DBF_RECCHOICE The input format. The choices are:
"ASCII" (default) The data read from the device will

be placed in the AINP field.

"Hybrid" The data read from the device will
be placed in the BINP field.

"Binary" The data read from the device will
be placed in the BINP field.

TINP R
"Translated
input"

DBF_CHAR
(array)

This field will contain up to the first 40 characters of
the AINP or BINP fields (depending on IFMT), after
translation with epicsStrSnPrintEscaped, to convert
non−printable characters to a printable form (e.g. \r, \n,
etc.)

There are two input fields, AINP (ASCII Input) and BINP (Byte Input). The IFMT (Input Format) field is used to
select one or the other as the destination of data sent from the device.

A read operation terminates when any 1 of the following 4 conditions is met:

The input terminator (IEOS) is found (if IFMT="ASCII" or "Hybrid")1.
EOI asserted (GPIB only)2.
The desired number of input characters (NRRD) are received3.
The timeout (TMOT) expires4.

If IFMT="ASCII" then input is read into the AINP field with asynOctet−>read. This will remove the input EOS
string, if any, and AINP will be NULL terminated if possible.

If IFMT="Hybrid" then the input is read into the BINP field with asynOctet−>read. This will remove the input
EOS string, if any, and BINP will be NULL terminated if possible.

If IFMT="Binary" then the input is read into the BINP field using asynOctet−>read. This will ignore the input
EOS. BINP will be null terminated.

The TINP field is intended for operator display. It will contain up to the first 40 characters of the input read into
AINP (if IFMT="ASCII") or BINP (if IFMT="Hybrid" or "Binary"). Non−printable characters are first converted
to a printable form using epicsStrSnPrintEscaped. This field should not normally be using for parsing the
response from the device. This is the field that is shown as the ASCII input field in the medm display
asynRecord.adl. It is useful for displaying the device response, even in "Hybrid" and "Binary" input modes.

The IEOS terminator field is 40 characters long. However, the serial drivers permit 2 character end−of−message
strings at most. The GPIB drivers only permit 1 character end−of−message strings.

IEOS is set to the current value for the port when the record connects to the port. If IEOS is modified after the
record connects to the port, then the input EOS will be changed using asynOctet−>setInputEos. IMPORTANT:

asyn − asyn Record

Input Control Fields for asynOctet 7

The value of IEOS in the database file is never used, because it is modified when the record connects to the port.

Input/Output Control Fields for Register Interfaces

These fields control I/O when using the register interfaces (i.e. when IFACE="asynInt32", "asynUInt32Digital",
or "asynFloat64").

Name Access Prompt Data type Description

I32INP R "asynInt32 input" DBF_LONG The input data that is read from the device if
IFACE="asynInt32" and TMOD="Read" or
"Write/Read".

I32OUT R/W* "asynInt32 output" DBF_LONG The data that is sent to the device if
IFACE="asynInt32" and TMOD="Write" or
"Write/Read".

UI32INP R "asynUInt32Digital
input"

DBF_ULONG The input data that is read from the device if
IFACE="asynUInt32Digital" and
TMOD="Read" or "Write/Read".

UI32OUT R/W* "asynUInt32Digital
output"

DBF_ULONG The data that is sent to the device if
IFACE="asynUInt32Digital" and
TMOD="Write" or "Write/Read".

UI32MASK R/W "asynUInt32Digital
mask"

DBF_ULONG The mask that is used if
IFACE="asynUInt32Digital". The mask is used
for both write and read operations. Only bits
that are set in mask will be modified on writes,
and any bits that are clear in mask will be zero
on read.

F64INP R "asynFloat64 input" DBF_DOUBLE The input data that is read from the device if
IFACE="asynFloat64" and TMOD="Read" or
"Write/Read".

F64OUT R/W* "asynFloat64
output"

DBF_DOUBLE The data that is sent to the device if
IFACE="asynFloat64" and TMOD="Write" or
"Write/Read".

Serial Control Fields

Name Access Prompt Data type Description

PRTY R/W "Parity" DBF_RECCHOICE The device parity. Choices are "Unknown", "None",
"Even", and "Odd". Default="Unknown".

DBIT R/W "Data bits" DBF_RECCHOICE The number of data bits. Choices are "Unknown", "5",

asyn − asyn Record

8 Input/Output Control Fields for Register Interfaces

"6", "7", and "8". Default="Unknown".

SBIT R/W "Stop bits" DBF_RECCHOICE The number of stop bits. Choices are "Unknown", "1"
and "2". Default="Unknown".

MCTL R/W "Modem
Control"

DBF_RECCHOICE Modem control. Choices are "Unknown", "CLOCAL"
and "YES". Default="Unknown".

FCTL R/W "Flow
control (cts
rts)"

DBF_RECCHOICE Flow control. Choices are "Unknown", "None" and
"Hardware". Default="Unknown". Hardware means to
use the cts (clear to send) and rts (request to send)
signals

The above fields are used to set the serial port parameters. A write to any of these fields causes the port
parameters to be changed immediately, but does not cause any I/O to be performed. The port parameters can
currently be set only for local serial ports, including IP−Octal on vxWorks. They cannot currently be set for
Ethernet/serial adapters like the Moxa units.

The "Unknown" choice for each option is used on readback if the driver does not support that option. "Unknown"
should not be written into the field.

The baud rates actually available are device dependent. For the SBS IP−Octal module the maximum baud rate is
38400.

These record fields are set to the values currently in effect for the port when the connection to the port is made.
IMPORTANT: The value of these fields in the database file is never used, because it is modified when the record
connects to the port.

vxWorks and MCTL,FCTL. The sioLib serial support for vxWorks uses CLOCAL for what POSIX calls
CTSRTS (Clear to send and request to send). It does not appear that sioLib has any concept of modem control,
which is what POSIX calls CLOCAL. For vxWorks the standard serial support for asynDriver supplied in
drvAsynSerialPort.c, accepts both MCTL and FCTL. MCTL=(CLOCAL,YES) is the same as
FCTL=(None,Hardware).

GPIB Control Fields

Name Access Prompt Data type Description

SPR R "Serial Poll
Response"

DBF_UCHAR The device status byte, which is read during a
Serial Poll operation.

UCMD R/W* "Universal
command"

DBF_RECCHOICE A GPIB Universal Command to be executed. .
The choices are:
"None"

"Device Clear (DCL)"

"Local Lockout (LL0)"

"Serial Poll Disable (SPD)"

"Serial Poll Enable (SPE)"

"Unlisten (UNL)"

"Untalk (UNT)"

asyn − asyn Record

GPIB Control Fields 9

ACMD R/W* "Addressed
command"

DBF_RECCHOICE A GPIB Addressed Command to be executed.
The choices are:
"None"

"Group Execute Trig. (GET)"

"Go To Local (GTL)"

"Selected Dev. Clear (SDC)"

"Take Control (TCT)"

"Serial Poll"

GPIB Universal Commands are commands which are directed to all devices on the GPIB bus, not just addressed
devices. If the UCMD field is set to any value except "None" then the appropriate Universal Command is
executed, and UCMD is set back to "None". The record processing only performs the Universal Command, i.e. it
does not also perform the GPIB operation indicated by TMOD.

GPIB Addressed Commands are commands which are directed to only the addressed devices on the GPIB bus. If
the ACMD field is set to any value except "None" then the appropriate Addressed Command is executed, and
ACMD is set back to "None". The record processing only performs the Addressed Command, i.e. it does not also
perform the GPIB operation indicated by TMOD.

Trace Control Fields

Name Access Prompt Data type Description

TMSK R/W
"Trace
mask"

DBF_LONG The asynTraceMask.

TB0 R/W "Trace
error"

DBF_RECCHOICE The ASYN_TRACE_ERROR bit. Choices are "Off" and
"On".

TB1 R/W
"Trace IO
device"

DBF_RECCHOICE
The ASYN_TRACEIO_DEVICE bit. Choices are "Off"
and "On".

TB2 R/W
"Trace IO
filter"

DBF_RECCHOICE
The ASYN_TRACEIO_FILTER bit. Choices are "Off"
and "On".

TB3 R/W
"Trace IO
driver"

DBF_RECCHOICE
The ASYN_TRACEIO_DRIVER bit. Choices are "Off"
and "On".

TB4 R/W
"Trace
flow"

DBF_RECCHOICE
The ASYN_TRACE_FLOW bit. Choices are "Off" and
"On".

TIOM R/W
"Trace I/O
mask"

DBF_LONG The asynTraceIOMask.

TIB0 R/W
"Trace IO
ASCII"

DBF_RECCHOICE
The ASYN_TRACEIO_ASCII bit. Choices are "Off"
and "On".

TIB1 R/W
"Trace IO
escape"

DBF_RECCHOICE
The ASYN_TRACEIO_ESCAPE bit. Choices are "Off"
and "On".

asyn − asyn Record

10 Trace Control Fields

TIB2 R/W
"Trace IO
hex"

DBF_RECCHOICE
The ASYN_TRACEIO_HEX bit. Choices are "Off" and
"On".

TSIZ R/W
"TraceIO
truncate
size"

DBF_LONG
The parameter passed to
asynTraceSetTraceIOTruncateSize(). This value is used
to limit the number of I/O bytes printed by traceIO.

TFIL R/W
"Trace IO
file"

DBF_STRING
The name of the file to which trace information is
printed.

The above fields are used to control the asynTrace facility. They allow one to turn on and off debugging output
printed at the shell or written to the trace file.

The TMSK field allows one to read/write the entire asynTraceMask word. The TB0−TB4 fields allow one to
read/write the individual bits in asynTraceMask. Similarly, the TIOM field allows one to read/write the entire
asynTraceIOMask word, and the TIB0−TIB2 fields allow one to read/write the individual bits in
asynTraceIOMask

When the asyn record is connected to a new device with the PORT and ADDR fields the above trace fields are
automatically updated to reflect the current asynTrace and asynTraceIO masks for that device.

The TFIL field is used to set the name of the trace file. It is not possible for the asyn record to determine the
current file name if the record did not set it. In this case the file name is displayed as "Unknown". Set this field
to a string file name (including possibly a valid path from the IOC's current default directory) to have the output
written to that file. The following values are handled as special cases:

<stdout> − Write to standard out.•
<stderr> − Write to standard error.•
<errlog> − Use the errlog facility.•

Connection Management Fields

Name Access Prompt Data type Description

AUCT R/W "Autoconnect" DBF_RECCHOICE Sets the autoconnect option.
Choices are "noAutoConnect"
and "autoConnect". The value
read reflects current state of
the autoconnect flag, i.e. the
value returned from
isAutoConnect().

ENBL R/W "Disable/Enable" DBF_RECCHOICE

Disables or enables the port.
Choices are "Disable" and
"Enable". The value read
reflects current state of the
enabled flag, i.e. the value
returned from isEnabled().

asyn − asyn Record

Connection Management Fields 11

CNCT R/W "Connect/Disconnect" DBF_RECCHOICE

Disconnects or connects the
device. Choices are
"Disconnect" and "Connect".
The value read reflects current
state of the connected flag, i.e.
the value returned from
isConnected().

Error Status Fields

Name Access Prompt Data type Description

ERRS R "Error status" DBF_STRING Error status string for the most recent operation. This
string is set to "" (null string) at the start of each
connection and I/O operation.

AQR W "About
queueRequest"

DBF_CHAR Abort queueRequest. If a process request has been
queued but not delivered it is canceled, the record is put
into alarm and record completion occurs.

The ERRS field is set to "" (null string) at the start of every operation, including trace and connection
management operations. It contains the first 100 characters of any error message the record writes with
asynPrint(...ASYN_TRACE_ERROR...).

The standard EPICS record fields STAT (status) and SEVR (severity) are used to report the I/O error status. For
example status field may be set to NO_ALARM, WRITE, READ, or COMM, and the SEVR field may be set to
NO_ALARM, MINOR, or MAJOR. These alarm fields are only used to report I/O errors or errors when
connecting to a new PORT or ADDR. They are not affected by trace or connection management operations.

Private Fields

Name Access Prompt Data type Description

IPTR N "Input buffer pointer" DBF_NOACCESS The pointer to the buffer for the BINP field.

OPTR N "Output buffer pointer" DBF_NOACCESS The pointer to the buffer for the BOUT field.

Record Processing

The asyn record processes, i.e. performs the I/O operation given by TMOD, according to the normal rules for
EPICS records. The AOUT, BOUT, I32OUT, UI32OUT, and F64OUT fields are Process Passive, so the record
will process if these fields are written to and the SCAN field of the record is Passive. The scan field of the record

asyn − asyn Record

12 Error Status Fields

can be set to any of the periodic scan rates (e.g. "1 second") for periodic processing, to "Event" for event
processing, or to "I/O Intr" for I/O interrupt processing.

"I/O Intr" scanning is fully supported for drivers that provide callbacks.

If the SCAN field is "I/O Intr" it will be changed to "Passive" when any of the following fields are modified:
PORT, ADDR, DRVINFO, REASON, IFACE, or UINT32MASK. This is necessary because changes to these
fields require re−registering with the interrupt source.

Obsolete serial and GPIB records

The asyn record is designed to be a complete replacement for the older generic serial ("serial") and generic GPIB
("gpib") records. These records are no longer needed, and will not be supported in the future. The following is a
list of the differences between the old serial and GPIB records and the new asyn record which may require
changes to databases or applications.

The ODEL field has been replaced by OEOS. It has changed from a DBF_LONG to DBF_STRING in
order to support multi−character terminators.

•

The IDEL (serial) and EOS (gpib) fields have been replaced by IEOS. They have changed from a
DBF_LONG to DBF_STRING in order to support multi−character terminators.

•

The INP field has been replaced by the PORT and ADDR fields in order to support run−time connection
to different devices.

•

The AOUT and OEOS fields are processed by dbTranslateEscape before being sent to the device. In rare
cases this may require changing the output strings if these contained the "\" character.

•

The asyn record always posts monitors on the input field (AINP or BINP) when the record processes.
The older records did not post monitors on the AINP field if the value was the same as the previous read.
This caused problems for some SNL programs and data acquisition applications.

•

The ODEL and IDEL fields were used even when OFMT or IFMT were in "Binary" mode. OEOS and
IEOS are now ignored when OFMT or IFMT respectively are in "Binary" mode.

•

The ODEL and IDEL fields were always used to set the input and output end of string. The IEOS and
OEOS fields now are now initialized to the current EOS settings for the port when the record connects.
IEOS and OEOS only change the EOS settings if these fields are modified after the record connects to the
port. Thus, it is now important to initialize the EOS strings for the port correctly in the startup script.

•

The TMOT field has changed from DBF_LONG to DBF_DOUBLE, and the units have changed from
milliseconds to seconds. TMOT=−1.0 now means wait forever.

•

asyn − asyn Record

Obsolete serial and GPIB records 13

medm screens

The following are screen shots of the medm screens provided for the asyn record.

Main control screen, asynRecord.adl

asyn − asyn Record

14 medm screens

asynOctet I/O screen, asynOctet.adl

asyn register device I/O screen, asynRegister.adl

asyn − asyn Record

asynOctet I/O screen, asynOctet.adl 15

Serial port setup screen, asynSerialPortSetup.adl

GPIB setup screen, asynGPIBSetup.adl

Socket setup screen, asynSocketSetup.adl

asyn − asyn Record

16 Serial port setup screen, asynSerialPortSetup.adl

Example #1

The following is an IDL program that demonstrates the use of the asyn record. It transfers data in both ASCII and
binary formats. Hopefully the IDL syntax is clear enough to be understood by non−IDL users, and can be
translated into your favorite scripting language.

; This IDL program demonstrates the use of the EPICS asyn record.
; The program uses 2 asyn records. The ports corresponding to these
; 2 records are connected with a null−modem cable
; Record 1 sends a message to record 2 in ASCII.
; Record 2 sends a message back to record 1 in binary.

; Record names
rec1 = '13LAB:serial2'
rec2 = '13LAB:serial3'
recs = [rec1, rec2] ; Array with both record names
; Set up port parameters for both records:
; 19,200 baud, 8 data bits, 1 stop bit, no parity, no flow control
; Timeout=1 second
for i=0, 1 do begin
 rec = recs[i]
 t = caput(rec+'.BAUD', '19200')
 t = caput(rec+'.DBIT', '8')
 t = caput(rec+'.SBIT', '1')
 t = caput(rec+'.PRTY', 'None')
 t = caput(rec+'.FCTL', 'None')
 t = caput(rec+'.TMOT', 1.0)
endfor

; Put record 1 in ASCII output mode, <CR> output delimiter,
; binary input mode, no input delimiter
t = caput(rec1+'.OFMT', 'ASCII')
t = caput(rec1+'.OEOS', '\r')
t = caput(rec1+'.IFMT', 'Binary')
t = caput(rec1+'.IEOS', '')
; Put a monitor on record 1 Binary input field
t = casetmonitor(rec1+'.BINP')
; Clear the monitor by reading the value
t = caget(rec1+'.BINP', junk)

; Put record 2 in Binary output mode, no output delimiter
; ASCII input mode, <CR> input delimiter
t = caput(rec2+'.OFMT', 'Binary')
t = caput(rec2+'.OEOS', '')
t = caput(rec2+'.IFMT', 'ASCII')
t = caput(rec2+'.IEOS', '\r')

; Put record 2 in read transfer mode
t = caput(rec2+'.TMOD', 'Read')
; Put a monitor on record2 ASCII input field
t = casetmonitor(rec2+'.AINP')
; Clear the monitor by reading the value
t = caget(rec2+'.AINP', junk)

; Process record 2; this will cause it to wait for data
t = caput(rec2+'.PROC', 1)
; Put record 1 in Write transfer mode
t = caput(rec1+'.TMOD', 'Write')
; Send a message to port 2
message = 'Request data: '+string(systime())

asyn − asyn Record

Example #1 17

print, 'Record 1 sent message: ' + message
t = caput(rec1+'.AOUT', message)

; Wait for monitor on record2 ASCII input field
while (not cacheckmonitor(rec2+'.AINP')) do wait, .1
; Read data from record 2
t = caget(rec2+'.AINP', input)
print, 'Got a message from record 1: ', input

size=256
; Put record 1 in read mode, expect "size" byte input
t = caput(rec1+'.TMOD', 'Read')
t = caput(rec1+'.NRRD', size)
; Process record 1; this will cause it to wait for data
t = caput(rec1+'.PROC', '1')

; Put record 2 in write mode
t = caput(rec2+'.TMOD', 'Write')
; Send an 8 bit binary sin wave, "size" points long from
; port 2 to port 1
send_data = byte(sin(findgen(size)/5)*126 + 127)
t = caput(rec2+'.NOWT', size)
t = caput(rec2+'.BOUT', send_data)

; Wait for monitor on channel 1 binary input
while (not cacheckmonitor(rec1+'.BINP')) do wait, .1

; Record 1 should have received "size" bytes. Make sure NORD=size
t = caget(rec1+'.NORD', nord)
if (nord eq size) then $
 print, 'Read array data OK' $
else $
 print, 'Error reading array data!'

; Read data from record 1
t = caget(rec1+'.BINP', rec_data, max=nord)

; Plot it
plot, rec_data

end

Example #2

The following is an IDL procedure that demonstrates the use of the asyn record to communicate with a Tektronix
TDS200 Digital Oscilloscope. It transfers data in both ASCII and binary formats. It will work with either an
RS−232 or GPIB connection to the scope. The record must be loaded with IMAX at least large enough to read
the waveform. The entire waveform readout is 2500 channels on the TDS220. The buffer size required is 1 byte
per channel + 7 bytes header/checksum. The start and stop parameters to the procedure can be used to read a
subset of the waveform.

Hopefully the IDL syntax is clear enough to be understood by non−IDL users, and can be translated into your
favorite scripting language.

pro read_tds200, record, data, start=start, stop=stop, chan=chan

; This procedure reads waveforms from the Tektronix TDS200 series scopes
; Mark Rivers
; Modifications:

asyn − asyn Record

18 Example #2

; March 7, 2001 Correctly put record in Write and Write/Read modes.
; Dec. 7, 2001 Set timeout to 2 seconds before read.
; March 30, 2004 Change IFMT from Binary to Hybrid, other fixes.

if (n_elements(start) eq 0) then start=1
if (n_elements(stop) eq 0) then stop=2500
if (n_elements(chan) eq 0) then chan=1
chan = 'CH'+strtrim(chan,2)

aout = record + '.AOUT'
binp = record + '.BINP'
tmod = record + '.TMOD'
ifmt = record + '.IFMT'
binp = record + '.BINP'
nord = record + '.NORD'
tmot = record + '.TMOT'
oeos = record + '.OEOS'
ieos = record + '.IEOS'

; Set the terminators to newline (assumes scope is set up this way)
t = caput(oeos, '\n', /wait)
t = caput(ieos, '\n', /wait)

; Set the transfer mode to write
t = caput(tmod, 'Write', /wait)

; Set the encoding to positive binary, start and stop readout channels
; Set the readout range. Can't do as one command, exceed 40 characters
command = 'DATA:ENC RPB; DATA:START ' + strtrim(start,2)
t = caput(aout, command, /wait)
command = 'DATA:STOP ' + strtrim(stop,2)
t = caput(aout, command, /wait)

;Set DATa:WIDth to 2
;command = 'DATA:WIDTH 2'
;t = caput(aout, command, /wait)

;Set channel number
command = 'DATA:SOURCE '+ strtrim(chan,2)
t = caput(aout, command, /wait)

; Set the input mode to hybrid. Large buffer but line−feed terminator
t = caput(ifmt, 'Hybrid', /wait)

; Set the transfer mode to write/read
t = caput(tmod, 'Write/Read', /wait)

; Empirically the timeout needs to be about 5 seconds for
; 1024 channels with RS−232
t = caput(tmot, 5.0)

; Read the scope
t = caput(aout, 'Curve?', /wait)

; Get the data
t = caget(binp, data)

; Check the number of bytes read. See if it's what's expected
n_data = stop−start+1
n_header = 2 + strlen(strtrim(n_data, 2))
n_checksum = 1

asyn − asyn Record

Example #2 19

n_expected = n_header + n_data + n_checksum
t = caget(nord, n)
if (n ne n_expected) then $
 print, 'Scope returned:', n, $' bytes, expected: ', n_expected

; The first n_header bytes are header, the last byte is checksum.
; Data are offset by 127, convert to long
data = data[n_header:n−2] − 127L

return
end

Suggestions and comments to: Mark Rivers : (rivers@cars.uchicago.edu)
Last modified: November 18, 2004

asyn − asyn Record

20 Example #2

mailto:rivers@cars.uchicago.edu

	Table of Contents
	asyn Record
	Contents
	Overview
	Device Address Control Fields
	Input/Output Control Fields
	Output Control Fields for asynOctet
	Input Control Fields for asynOctet
	Input/Output Control Fields for Register Interfaces
	Serial Control Fields
	GPIB Control Fields
	Trace Control Fields
	Connection Management Fields
	Error Status Fields
	Private Fields
	Record Processing
	Obsolete serial and GPIB records
	medm screens
	Main control screen, asynRecord.adl
	asynOctet I/O screen, asynOctet.adl
	asyn register device I/O screen, asynRegister.adl
	Serial port setup screen, asynSerialPortSetup.adl
	GPIB setup screen, asynGPIBSetup.adl
	Socket setup screen, asynSocketSetup.adl

	Example #1
	Example #2

