
CONTROL SYSTEM STUDIO ARCHIVER WITH PostgreSQL BACK-END:

OPTIMIZING PERFORMANCE AND RELIABILITY

FOR A PRODUCTION ENVIRONMENT∗

M. Konrad† , C. Burandt, J. Enders, N. Pietralla

TU Darmstadt, Darmstadt, Germany

Abstract

Archiving systems based on relational databases provide

a higher flexibility with regard to data retrieval and analysis

than the traditional EPICS Channel Archiver. On the other

hand they can suffer from poor performance compared to

the Channel Archiver for simple linear data retrieval opera-

tions. However, careful tuning of the database management

system’s configuration can lead to major performance im-

provements. Special care must be taken to ensure data in-

tegrity following power outages or hardware failures.

This contribution describes the hardware and software

configuration of an archiving system used in the production

environment at the S-DALINAC. It covers performance

and reliability aspects of the hardware as well as tuning

of the Linux operating system and the PostgreSQL server.

INTRODUCTION

Archiving systems that collect and store data from an

accelerator control system play an important role in mod-

ern control system environments. They can e. g. help

to identify broken hardware, decreasing performance of

components or wrong operation of systems by an opera-

tor. Thus archiving systems with high availability are de-

manded. Since wrong or inconsistent data from an archiv-

ing system can lead to wrong decisions by the operators

it is also important to ensure data integrity. On the other

hand data from the archive should be (read-only) accessi-

ble from many different applications ranging from simple

spreadsheet applications to mathematical software for so-

phisticated data analysis. These requirements make rela-

tional databases (RDBs) a reasonable choice as a storage

back-end.

The archiving system of the S-DALINAC is based on the

Control System Studio (CSS) Archive Engine. This ser-

vice collects data from control system channels and writes

it to different RDB back-ends (MySQL, Oracle or Post-

greSQL). PostgreSQL 9.1 running on Debian Linux has

been chosen as a back-end because it is a powerful open-

source RDB solution that comes without license fees.

Archiving systems usually have to manage a growing

amount of data making read and write performance an im-

portant issue. In the following we describe how to tune an

archiving system for maximum performance while ensur-

ing data integrity.

∗Work supported by DFG through CRC 634
† konrad@ikp.tu-darmstadt.de

DISK PERFORMANCE AND

RELIABILITY

Disk access is the most important factor for the perfor-

mance of a database system that deals with much more data

than can be stored in main memory. While modern disk

drives can deliver data rates of more than 100 MB/s for se-

quential reads and writes they can be very slow when they

have to deal with random access patterns. Heavy random

access workload can occur if data is read from an archive

by multiple clients using indexes. Thus database disks have

to be optimized for high random access performance.

Write Caching

To improve access time all recent hard disk drives use

integrated write-back caches and techniques to speed up

disk access by optimizing the order in which read and write

commands are executed to reduce the amount of drive-head

movement. To insure data integrity database management

systems (DBMS) flush operating system write caches af-

ter each database commit to make sure all relevant data has

been stored on disk before marking the transaction as com-

plete. Write-back caches on the disk drive itself are not

flushed and thereby can lead to data loss and corruption of

the database files in case of a loss of power. To avoid this,

disk write caches have to be disabled for a database server.

Unfortunately switching off this cache severely reduces

write performance. Part of this performance loss can be re-

gained by using an appropriate operating system I/O sched-

uler that sorts the commands before sending them to the

disk. But frequent flushing limits the possibilities for opti-

mizations. A solution that provides better performance is

using a hardware RAID controller with a battery backup

unit. These controllers contain a non-volatile write-back

cache that is powered by a battery in case of power out-

ages. Data still in this cache when a loss of power occurs

is written to disk after power resumes. Note that disk write

caches often have to be disabled explicitly using the con-

figuration tool of the RAID controller.

In contrast to hard disks, solid-state drives provide very

high random access performance, but usually their write-

back cache is volatile and cannot be disabled making them

a bad choice if data integrity is a concern. Write caching is

also an issue if a DBMS runs in a virtual machine because

reliably flushing data to disk is impossible with most of

today’s virtualization products. Thus a physical machine

is required for the RDB back-end of an archiving system.



Table 1: Characteristics of RAIDs Consisting of N
Disks with Different Organization (Assuming Pairs of Two

Drives for RAID 10)

Space Fault

RAID efficiency tolerance I/O impact

level (disks) (disks) read write

0 N 0 1 1

1 1 N − 1 1 N
5 N − 1 1 1 4

6 N − 2 2 1 6

10 N/2 1 per pair 1 2

The CSS Archive Engine on the other hand can safely be

run on a virtual machine.

RAID Organization

Redundant arrays of independent disks (RAID) are a

way to improve disk performance and reliability [1]. Ta-

ble 1 gives an overview of the characteristics of the most

common RAID levels. RAID 0 increases performance by

striping data over multiple disks. It is unsuited for most

archiving purposes because data is lost if a single disk fails.

RAID 1 mirrors data to multiple disks to improve reliabil-

ity. The size of the array is thereby limited by the size of

a single disk which is insufficient for big archives. RAID

levels 5 and 6 store additional parity information to make

the array tolerant against failures of one or two disks, re-

spectively, while still providing high space efficiency. The

disadvantage of these RAID levels is that modifying a sin-

gle block leads to 4 or 6 I/O operations, respectively. This

can significantly reduce performance of archiving systems

that constantly archive thousands of channels at high data

rates. RAID 10 stripes data over pairs of mirrored disks and

thereby provides high reliability along with good read and

write performance, even if a drive has failed. Therefore

RAID 10 has been chosen for the S-DALINAC’s archiv-

ing system. If space efficiency is more important than

write speed (e. g. for long-term archiving systems) RAID 6

might also be an option. Regardless of the RAID level,

modern RAID controllers distribute random reads over all

N disks resulting in an N times higher random-read per-

formance than a single disk can deliver.

The performance of a RAID can be improved by us-

ing faster spinning disks or a higher number of spindles.

For the S-DALINAC archiving system a higher number of

slower disks (10,000 rpm) turned out to be more economic.

Direct-attached storage has been favored over network-

attached storage for its lower latency. For systems that need

more storage than can be directly attached to a single ma-

chine storage area network technology might be an option.

Separate RAID volumes are used for the database itself,

the write ahead log (WAL) of the database, and the oper-

ating system (see Table 2). This makes sure that operating

system activity does not slow down database access. Sepa-

rate disks are used for the WAL because this file is written

Table 2: Disk Organization of the S-DALINAC RDB

Server

Volume RAID level Number of disks

operating system 1 2

write ahead log 1 2

database 10 30

hot spare 2

very heavily while data is inserted into the database. Since

the write pattern of the WAL is sequential this almost com-

pletely avoids disk seek times. In addition to that separate

volumes simplify identification of bottlenecks as well as

continuous load monitoring.

Operating system configuration can also have a severe

impact on the performance of an archiving back-end. On

machines using a hardware RAID the noop operating sys-

tem I/O scheduler should be used to avoid false optimiza-

tion. In addition to that increasing read-ahead size can be

necessary to exploit full sequential read data rates.

MEMORY CONFIGURATION

The database back-end can answer queries a lot faster if

it does not need to read the data from disk. With 128 GB

the size of the system main memory has been chosen to be

large enough to hold the data of the last days including the

relevant indexes.

PostgreSQL spawns a dedicated process for each

database connection. All these processes perform read and

write operations against a common memory region called

buffer cache. Improper configuration of this memory can

severely reduce read and write performance. Note that this

parameter is configured for maximum compatibility instead

of maximum performance by default. For optimal perfor-

mance we had to increase the buffer cache size by three

orders of magnitude to roughly 25% of the main mem-

ory. This still leaves the operating system enough RAM

for caching reads. On Linux systems it is necessary to in-

crease the maximum shared memory segment size of the

kernel accordingly.

PARTITIONING

If the size of the sample table grows much larger than

physical memory and even its index stops fitting into mem-

ory query times can escalate. One way to improve perfor-

mance is to split data into several partitions that each fit into

main memory. At the S-DALINAC most database queries

ask for data from the last three or four days making parti-

tioning over time with a partition size of a week a reason-

able choice. When executing queries the DBMS can skip

partitions that are outside the requested range. For most

queries only one or two partitions have to be considered.

In contrast to enterprise databases like Oracle or MS

SQL, PostgreSQL does not provide built-in functions for

partitioning. Using PostgreSQL’s extensive server-side



Table 3: Write Rates Obtained with Different Configura-

tion of the Archiver Database Table

Foreign key constraints Partitioning Rows/s

no no 18289

yes no 6075

yes yes 3865

Table 4: Hardware of the S-DALINAC PostgreSQL Server

Main-board Supermicro X9DRi-F

CPU 2×Intel Xeon E5-2643 @3.3 GHz

Main memory 128 GB DDR3 registered ECC

RAID controller Adaptec 6805 SAS2

Disks 36×Toshiba MBF230LRC 300 GB

programming features a partitioning solution tailored to the

particular needs of the CSS archiver has been developed. It

uses table inheritance to combine the data of weekly sub-

tables into one table. A trigger function redirects INSERTs

to the appropriate partition. New partitions are added auto-

matically. The partitioning feature only affects the database

side of the archiver and has been included into the Control

System Studio distribution.

While partitioning can significantly speed up read ac-

cess it introduces checking of additional constraints during

INSERTs. This results in higher CPU load and can limit

maximum write rates.

PERFORMANCE MEASUREMENTS

Write Performance

Before the archiving system has been put into oper-

ation, write performance has been measured using the

RDBArchiveWriterTest.testWriteSpeedDouble()

test included in the CSS Archive Engine code. This test

is very close to real archiving load because it uses the

same write scheme and the same code on the client side.

It has been used to verify the success of the tuning steps

described in this paper. Typical write rates obtained with

this test are presented in Table 3. An overview of the

hardware used for this benchmark is given in Table 4.

Write performance strongly depends on the configura-

tion of the database. Adding foreign keys between tables

to ensure referential integrity forces the DBMS to check

each row against all foreign keys before an insert operation

can be performed.

Performance of database writes also strongly depends

on the command that is used to write the data. The cur-

rent implementation of CSS Archive Engine improves per-

formance by submitting INSERTs to the database server

in batches before committing the data. Benchmarks im-

plemented in Perl confirm this performance gain but they

also show that other write techniques can provide even bet-

ter performance. Figure 1 clearly shows that much higher

write rates can be obtained by using multi-row INSERTs or

0

5

10

15

20

0 200 400 600 800 1000 1200

in
se

rt
ra

te
(1
0
4

ro
w

s/
s)

batch size

COPY

multi-row INSERT

INSERT

Figure 1: Write performance obtained with different write

schemes and batch sizes.

the PostgreSQL-specific COPY command. Although perfor-

mance might depend on the library used for database ac-

cess, results suggest that performance might be improved

in the future by using more efficient write commands.

Read Performance

Benchmarking read performance is more complex than

benchmarking write access since synthetic benchmarks can

lead to unrealistic caching of relevant data. In contrast

to the write case multiple clients can issue queries at the

same time. Up to now read performance has only been de-

termined by measuring execution times of single queries.

These results confirm that partitioning improves read per-

formance. A more realistic benchmark is under develop-

ment.

SUMMARY

A battery backed up write cache as well as careful con-

figuration of the PostgreSQL back-end are important to

achieve high performance while at the same time ensuring

data integrity. Write performance can be improved by re-

moving foreign key constraints while at the same time los-

ing referential integrity checks. Another way to improve

performance in the future might be to use more efficient

write patterns like multi-row INSERTs or the COPY com-

mand. Read performance can be significantly improved by

partitioning the sample table. As soon as solid-state drives

are reliable enough they can also help to further improve

performance.

ACKNOWLEDGEMENTS

We thank Kay Kasemir (ORNL) and Lana Abadie

(ITER) for fruitful discussions and their valuable help in

understanding the implementation of the Archive Engine.

REFERENCES

[1] D. A. Patterson et. al., “A case for redundant arrays of in-

expensive disks (RAID)”. Proceedings of SIGMOD 1988,

Chicago, IL, USA, p. 109–116.


