EPICS Controls Argonne National Laboratory

Experimental Physics and
Industrial Control System

1994  1995  1996  1997  1998  1999  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020  <20212022  2023  2024  Index 1994  1995  1996  1997  1998  1999  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020  <20212022  2023  2024 
<== Date ==> <== Thread ==>

Subject: RE: EPID Record
From: Mark Rivers via Tech-talk <tech-talk at aps.anl.gov>
To: 'Ben Franksen' <benjamin.franksen at helmholtz-berlin.de>
Cc: "tech-talk at aps.anl.gov" <tech-talk at aps.anl.gov>
Date: Sun, 14 Feb 2021 21:52:11 +0000

> I didn't mention it because it seemed like a very exceptional situation, though your example suggests it may not be that exceptional after all.

 

I'm not a controls system expert by any means, but it seems like that when the output being driven controls the derivative of the property being controlled then you don't really need an integral term.  

 

I have never really used the derivative term (KD), but these cases may be where that is needed.

 

Mark

 

 

-----Original Message-----
From: Ben Franksen <benjamin.franksen at helmholtz-berlin.de>
Sent: Sunday, February 14, 2021 3:37 PM
To: Mark Rivers <rivers at cars.uchicago.edu>
Cc: tech-talk at aps.anl.gov
Subject: Re: EPID Record

 

Am 14.02.21 um 03:40 schrieb Mark Rivers:

>> That means KI must *always* be non-zero.

>

> No, that's not true.  Consider the case of DC motor where the EPID

> output is a DAC that controls the motor velocity.  If the VAL field is

> the motor position, then when the motor is at the target position the

> velocity is 0, so the I term must be 0.

Right. I should have added "... except in case the output variable should be zero when the target value is reached". I didn't mention it because it seemed like a very exceptional situation, though your example suggests it may not be that exceptional after all.

 

Cheers

Ben

 

> Am 13.02.21 um 13:32 schrieb Mark Rivers:

>>> Suppose we have been at the target position for some time, i.e.

>>> VAL=OVAL, so that E(n)=0 for all n. Then all terms become 0 and the

>>> output is OVAL=0 as well. But shouldn't it be OVAL=VAL instead?

>> Your statement that "we have been at the target position for some

>> time, i.e. VAL=OVAL" is also incorrect.  When it is at the target

>> position VAL=CVAL, not OVAL.

> Yes, sorry, I have confused OVAL and CVAL here.

>

>> I think your statement that "all terms become 0" is incorrect.  The

>> integral term (I) does not become zero even when sitting at the

>> desired setpoint for infinite time, because it is the integral from

>> time=T0, where T0 is the time that the feedback was turned on.

> So that means if we start the feedback when E=VAL-CVAL=0 then we will

> first move the system *away* from the desired VAL (unless it happens

> to be equal to zero). Then we accumulate the errors, increasing I at

> each step, until after a while I is large enough to compensate our initial error.

>

> That means KI must *always* be non-zero. I find it a bit strange that

> it initially has to move away from the correct output value only to

> arrive at that value some steps later. Is it possible to preload the I

> with a non-zero value if one has a good guess what its initial value should be?

>

>> The integral term is what prevents "droop", e.g. it is what supplies

>> the constant power required to keep a furnace at 500 C even when the

>> error is 0.

> Ok, I think I understand this now. Thanks.

>

>> I use the EPID record for lots of tasks and it seems to work fine.

>> Have you observed an issue which led you to post this message?

> Not me personally. Some physicists wanted to understand the behavior

> of one of our control loops better, looked at the formula and came up

> with the above objection. I agree that with a non-zero KI it should

> work (after enough initial cycles).

>

> Cheers

> Ben

> --

> I would rather have questions that cannot be answered, than answers

> that cannot be questioned.  -- Richard Feynman

>

>

 

 

--

I would rather have questions that cannot be answered, than answers that cannot be questioned.  -- Richard Feynman

 

 


References:
EPICS Record Ben Franksen via Tech-talk
Re: EPID Record Ben Franksen via Tech-talk
Re: EPID Record Mark Rivers via Tech-talk
Re: EPID Record Ben Franksen via Tech-talk
Re: EPID Record Mark Rivers via Tech-talk
Re: EPID Record Ben Franksen via Tech-talk

Navigate by Date:
Prev: Re: EPID Record Ben Franksen via Tech-talk
Next: Re: EPID Record Till Straumann via Tech-talk
Index: 1994  1995  1996  1997  1998  1999  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020  <20212022  2023  2024 
Navigate by Thread:
Prev: Re: EPID Record Ben Franksen via Tech-talk
Next: Re: EPID Record Till Straumann via Tech-talk
Index: 1994  1995  1996  1997  1998  1999  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020  <20212022  2023  2024 
ANJ, 15 Feb 2021 Valid HTML 4.01! · Home · News · About · Base · Modules · Extensions · Distributions · Download ·
· Search · EPICS V4 · IRMIS · Talk · Bugs · Documents · Links · Licensing ·